Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(2): E162-E171, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279395

RESUMEN

Coronaviruses (CoVs) stand out among RNA viruses because of their unusually large genomes (∼30 kb) associated with low mutation rates. CoVs code for nsp14, a bifunctional enzyme carrying RNA cap guanine N7-methyltransferase (MTase) and 3'-5' exoribonuclease (ExoN) activities. ExoN excises nucleotide mismatches at the RNA 3'-end in vitro, and its inactivation in vivo jeopardizes viral genetic stability. Here, we demonstrate for severe acute respiratory syndrome (SARS)-CoV an RNA synthesis and proofreading pathway through association of nsp14 with the low-fidelity nsp12 viral RNA polymerase. Through this pathway, the antiviral compound ribavirin 5'-monophosphate is significantly incorporated but also readily excised from RNA, which may explain its limited efficacy in vivo. The crystal structure at 3.38 Šresolution of SARS-CoV nsp14 in complex with its cofactor nsp10 adds to the uniqueness of CoVs among RNA viruses: The MTase domain presents a new fold that differs sharply from the canonical Rossmann fold.


Asunto(s)
Coronavirus/metabolismo , ARN Viral/metabolismo , Ribavirina/metabolismo , Replicación Viral , Antivirales/metabolismo , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/genética , Cristalografía por Rayos X , Exorribonucleasas/química , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , ARN Viral/genética , Ribavirina/farmacología , Síndrome Respiratorio Agudo Grave/virología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
Appl Environ Microbiol ; 77(16): 5629-34, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21724887

RESUMEN

There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO(2) is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO(2), SiO(2), and Ag to identify optimal production conditions for the production of TiO(2)- and/or TiO(2)/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO(2) or TiO(2) plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO(2) films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO(2)/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO(2)/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO(2), producing a more pronounced effect with increasing levels of catalyst loading.


Asunto(s)
Antibacterianos/farmacología , Bacillus/efectos de los fármacos , Calor , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana/métodos , Plata/farmacología , Bacillus/efectos de la radiación , Catálisis , Desinfectantes/farmacología , Vidrio/química , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Rastreo , Fotoquímica , Dióxido de Silicio/farmacología , Factores de Tiempo , Titanio/farmacología , Rayos Ultravioleta
3.
Nat Commun ; 11(1): 4682, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943628

RESUMEN

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Pirazinas/farmacología , Amidas/farmacocinética , Animales , Antivirales/farmacocinética , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Modelos Moleculares , Mutagénesis/efectos de los fármacos , Pandemias , Neumonía Viral/virología , Pirazinas/farmacocinética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Análisis de Secuencia , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Antiviral Res ; 178: 104793, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32283108

RESUMEN

The rapid global emergence of SARS-CoV-2 has been the cause of significant health concern, highlighting the immediate need for antivirals. Viral RNA-dependent RNA polymerases (RdRp) play essential roles in viral RNA synthesis, and thus remains the target of choice for the prophylactic or curative treatment of several viral diseases, due to high sequence and structural conservation. To date, the most promising broad-spectrum class of viral RdRp inhibitors are nucleoside analogues (NAs), with over 25 approved for the treatment of several medically important viral diseases. However, Coronaviruses stand out as a particularly challenging case for NA drug design due to the presence of an exonuclease (ExoN) domain capable of excising incorporated NAs and thus providing resistance to many of these available antivirals. Here we use the available structures of the SARS-CoV RdRp and ExoN proteins, as well as Lassa virus N exonuclease to derive models of catalytically competent SARS-CoV-2 enzymes. We then map a promising NA candidate, GS-441524 (the active metabolite of Remdesivir) to the nucleoside active site of both proteins, identifying the residues important for nucleotide recognition, discrimination, and excision. Interestingly, GS-441524 addresses both enzyme active sites in a manner consistent with significant incorporation, delayed chain termination, and altered excision due to the ribose 1'-CN group, which may account for the increased antiviral effect compared to other available analogues. Additionally, we propose structural and function implications of two previously identified RdRp resistance mutations in relation to resistance against Remdesivir. This study highlights the importance of considering the balance between incorporation and excision properties of NAs between the RdRp and ExoN.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antimetabolitos/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Exorribonucleasas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/química , Alanina/farmacología , Antimetabolitos/química , Antivirales/química , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/metabolismo , COVID-19 , Dominio Catalítico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Farmacorresistencia Viral , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Humanos , Modelos Moleculares , Mutación , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Conformación Proteica , ARN Viral/química , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA