Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(4): C1226-C1236, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38406827

RESUMEN

Cancer and chemotherapy induce a severe loss of muscle mass (known as cachexia), which negatively impact cancer treatment and patient survival. The aim of the present study was to investigate whether cannabidiol (CBD) administration may potentially antagonize the effects of cisplatin in inducing muscle atrophy, using a model of myotubes in culture. Cisplatin treatment resulted in a reduction of myotube diameter (15.7 ± 0.3 vs. 22.2 ± 0.5 µm, P < 0.01) that was restored to control level with 5 µM CBD (20.1 ± 0.4 µM, P < 0.01). Protein homeostasis was severely altered with a ≈70% reduction in protein synthesis (P < 0.01) and a twofold increase in proteolysis (P < 0.05) in response to cisplatin. Both parameters were dose dependently restored by CBD cotreatment. Cisplatin treatment was associated with increased thiobarbituric acid reactive substances (TBARS) content (0.21 ± 0.03 to 0.48 ± 0.03 nmol/mg prot, P < 0.05), catalase activity (0.24 ± 0.01 vs. 0.13 ± 0.02 nmol/min/µg prot, P < 0.01), whereas CBD cotreatment normalized TBARS content to control values (0.22 ± 0.01 nmol/mg prot, P < 0.01) and reduced catalase activity (0.17 ± 0.01 nmol/min/µg prot, P < 0.05). These changes were associated with increased mRNA expression of GPX1, SOD1, SOD2, and CAT mRNA expression in response to cisplatin (P < 0.01), which was corrected by CBD cotreatment (P < 0.05). Finally, cisplatin treatment increased the mitochondrial protein content of NDUFB8, UQCRC2, COX4, and VDAC1 (involved in mitochondrial respiration and apoptosis), and CBD cotreatment restored their expression to control values. Altogether, our results demonstrated that CBD antagonize the cisplatin-induced C2C12 myotube atrophy and could be used as an adjuvant in the treatment of cancer cachexia to help maintain muscle mass and improve patient quality of life.NEW & NOTEWORTHY In an in vitro model, cisplatin treatment led to myotube atrophy associated with dysregulation of protein homeostasis and increased oxidative stress, resulting in increased apoptosis. Cotreatment with cannabidiol was able to prevent this phenotype by promoting protein homeostasis and reducing oxidative stress.


Asunto(s)
Cannabidiol , Neoplasias , Humanos , Cisplatino/toxicidad , Cannabidiol/farmacología , Cannabidiol/metabolismo , Cannabidiol/uso terapéutico , Caquexia/metabolismo , Catalasa/metabolismo , Calidad de Vida , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/farmacología , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/prevención & control , Atrofia Muscular/tratamiento farmacológico , Estrés Oxidativo , Neoplasias/metabolismo , ARN Mensajero/metabolismo
2.
Am J Physiol Endocrinol Metab ; 324(2): E176-E184, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36629822

RESUMEN

Sarcopenia, the age-related loss of skeletal muscle mass, is associated with lipid accumulation and anabolic resistance; phenomena also observed in obesity and worsen when obesity and aging are combined. The endocannabinoid system (ECS) is overactivated in obesity, but its role in aging obesity-related muscle dysfunction is unknown. The aims of this study were to evaluate the effect of inhibition of the ECS by rimonabant (RIM) on the metabolic alterations induced by a high-fat high-sucrose diet and on skeletal muscle mass/function in aged mice. Eighteen-month-old male mice were subjected to a control (CTL) or a high-fat high-sucrose (HFHS) diet for 24 weeks. Mice were administered with saline or RIM (10 mg/kg/day) for the last 4 weeks of the diet. Skeletal muscle function was evaluated by open-field, rotarod, and grip strength tests. Metabolic alterations in liver, adipose tissue, and skeletal muscle were investigated by quantitative RT-PCR. Body mass was higher in HFHS mice compared to CTL mice (48.0 ± 1.5 vs. 33.5 ± 0.7 g, P < 0.01), as a result of fat accumulation (34.8 ± 1.0 vs. 16.7 ± 0.8%, P < 0.01). RIM reduced body fat mass in both CTL (-16%, P < 0.05) and HFHS conditions (-40%, P < 0.01), without affecting hindlimb skeletal muscle mass. In HFHS mice, grip strength evolution was improved (-0.29 ± 0.06 vs. -0.49 ± 0.06 g/g lean mass, P < 0.05), and rotarod activity was increased by ≈60% in response to RIM (45.9 ± 6.3 vs. 28.5 ± 4.6 cm, P < 0.05). Lipolysis and ß-oxidation genes were upregulated in the liver as well as genes involved in adipose tissue browning. These results demonstrate that inhibition of the ECS induces metabolic changes in liver and adipose tissue associated with a reversion of the obese phenotype and that RIM is able to improve motor coordination and muscle strength in aged mice, without affecting skeletal muscle mass.NEW & NOTEWORTHY In 24-month-old mice submitted to high-fat high-sucrose-induced obesity, inhibition of the endocannabinoid system by rimonabant reversed the obese phenotype by promoting adipose tissue browning and ß-oxidation in the liver but not in skeletal muscle. These metabolism modifications are associated with improved skeletal muscle function.


Asunto(s)
Endocannabinoides , Obesidad , Masculino , Animales , Ratones , Endocannabinoides/metabolismo , Rimonabant/farmacología , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Dieta Alta en Grasa , Fenotipo , Sacarosa/farmacología , Ratones Endogámicos C57BL
3.
J Cell Physiol ; 236(4): 2669-2683, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32885412

RESUMEN

Sarcopenia is an age-related loss of muscle mass associated with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance; changes that are also commonly described in obesity. Activation of the endocannabinoid system is associated with the development of obesity and insulin resistance, and with the perturbed skeletal muscle development. Taken together this suggests that endocannabinoids could be regulators of skeletal muscle protein homeostasis. Here we report that rimonabant, an antagonist for the CB1 receptor, can prevent dexamethasone-induced C2C12 myotube atrophy without affecting the mRNA expression of atrogin-1/MAFbx (a marker of proteolysis), which suggests it is involved in the control of protein synthesis. Rimonabant alone stimulates protein synthesis in a time- and dose-dependent manner through mTOR- and intracellular calcium-dependent mechanisms. CB1 agonists are unable to modulate protein synthesis or prevent the effect of rimonabant. Using C2C12 cells stably expressing an shRNA directed against CB1, or HEK293 cells overexpressing HA-tagged CB1, we demonstrated that the effect of rimonabant is unaffected by CB1 expression level. In summary, rimonabant can stimulate protein synthesis in C2C12 myotubes through a CB1-independent mechanism. These results highlight the need to identify non-CB1 receptor(s) mediating the pro-anabolic effect of rimonabant as potential targets for the treatment of sarcopenia, and to design new side-effect-free molecules that consolidate the effect of rimonabant on skeletal muscle protein synthesis.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Fibras Musculares Esqueléticas/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant/farmacología , Animales , Calcio/metabolismo , Dexametasona/toxicidad , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Factores de Tiempo
4.
Diabetologia ; 57(4): 785-96, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24463962

RESUMEN

AIMS/HYPOTHESIS: Gene polymorphisms of TCF7L2 are associated with increased risk of type 2 diabetes and transcription factor 7-like 2 (TCF7L2) plays a role in hepatic glucose metabolism. We therefore addressed the impact of TCF7L2 isoforms on hepatocyte nuclear factor 4α (HNF4α) and the regulation of gluconeogenesis genes. METHODS: Liver TCF7L2 transcripts were analysed by quantitative PCR in 33 non-diabetic and 31 type 2 diabetic obese individuals genotyped for TCF7L2 rs7903146. To analyse transcriptional regulation by TCF7L2, small interfering RNA transfection, luciferase reporter and co-immunoprecipitation assays were performed in human hepatoma HepG2 cells. RESULTS: In livers of diabetic compared with normoglycaemic individuals, five C-terminal TCF7L2 transcripts showed increased expression. The type 2 diabetes risk allele of rs7903146 positively correlated with TCF7L2 expression in livers from normoglycaemic individuals only. In HepG2 cells, transcript and TCF7L2 protein levels were increased upon incubation in high glucose and insulin. Of the exon 13 transcripts, six were increased in a glucose dose-responsive manner. TCF7L2 transcriptionally regulated 29 genes related to glucose metabolism, including glucose-6-phosphatase. In cultured HepG2 cells, TCF7L2 did not regulate HNF4Α and FOXO1 transcription, but did affect HNF4α protein expression. The TCF7L2 isoforms T6 and T8 (without exon 13 and with exon 15/14, respectively) specifically interacted with HNF4α. CONCLUSIONS/INTERPRETATION: The different levels of expression of alternative C-terminal TCF7L2 transcripts in HepG2 cells, in livers of normoglycaemic individuals carrying the rs7901346 type 2 diabetes risk allele and in livers of diabetic individuals suggest that these transcripts play a role in the pathophysiology of type 2 diabetes. We also report for the first time a protein interaction in HepG2 cells between HNF4α and the T6 and T8 isoforms of TCF7L2, which suggests a distinct role for these specific alternative transcripts.


Asunto(s)
Gluconeogénesis/fisiología , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Adulto , Western Blotting , Femenino , Gluconeogénesis/genética , Células Hep G2 , Factor Nuclear 4 del Hepatocito/genética , Humanos , Inmunoprecipitación , Masculino , Persona de Mediana Edad , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética
5.
Hum Mol Genet ; 20(10): 1906-15, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21357677

RESUMEN

Type 2 diabetes manifests when the ß-cell fails to secrete sufficient amounts of insulin to maintain normoglycemia and undergoes apoptosis. The disease progression results from an interplay of environmental factors and genetic predisposition. Polymorphisms in T-cell factor 7-like 2 (TCF7L2) strongly correlate with type 2 diabetes mellitus (T2DM). While TCF7L2 mRNA is upregulated in islets in diabetes, protein levels are downregulated. The loss of TCF7L2 induces impaired function and apoptosis. By analyzing human isolated islets, we provide three explanations for this opposite regulation and the mechanisms of TCF7L2 on ß-cell function and survival. (i) We found TCF7L2 transcripts in the human ß-cell, which had opposite effects on ß-cell survival, function and Wnt signaling activation. While TCF7L2 clone B1, which lacks exons 13, 14, 15 and 16 induced ß-cell apoptosis, impaired function and inhibited glucagon-like peptide 1 response and downstream targets of Wnt signaling, clones B3 and B7 which both contain exon 13, improved ß-cell survival and function and activated Wnt signaling. (ii) TCF7L2 mRNA is extremely unstable and is rapidly degraded under pro-diabetic conditions and (iii) TCF7L2 depletion in islets induced activation of glycogen synthase kinase 3-ß, but this was independent of endoplasmic reticulum stress. We demonstrated function-specific transcripts of TCF7L2, which possessed distinct physiological and pathophysiological effects on the ß-cell. The presence of deleterious TCF7L2 splice variants may be a mechanism of ß-cell failure in T2DM.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Línea Celular , Supervivencia Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Activación Enzimática , Orden Génico , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Islotes Pancreáticos/metabolismo , Datos de Secuencia Molecular , Estabilidad del ARN/genética , Alineación de Secuencia , Transducción de Señal , Transcripción Genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
6.
Nutrients ; 15(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686798

RESUMEN

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Asunto(s)
Proteínas de Guisantes , Humanos , Masculino , Animales , Ratas , Lactante , Inulina/farmacología , Músculo Esquelético , Suplementos Dietéticos , Envejecimiento
7.
J Cachexia Sarcopenia Muscle ; 13(1): 662-676, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34854262

RESUMEN

BACKGROUND: Activation of the endocannabinoid system (ECS) is associated with the development of obesity and insulin resistance, and with perturbed skeletal muscle development. Age-related sarcopenia is a progressive and generalized skeletal muscle disorder involving an accelerated loss of muscle mass and function, with changes in skeletal muscle protein homeostasis due to lipid accumulation and anabolic resistance. Hence, both obesity and sarcopenia share a common set of pathophysiological alterations leading to skeletal muscle impairment. The aim of this study was to characterize how sarcopenia impacts the ECS and if these modifications were related to the loss of muscle mass and function associated with aging in rats. METHODS: Six-month-old and 24-month-old male rats were used to measure the contractile properties of the plantarflexors (isometric torque-frequency relationship & concentric power-velocity relationship) and to evaluate locomotor activity, motor coordination, and voluntary gait by open field, rotarod, and catwalk tests, respectively. Levels of endocannabinoids (AEA & 2-AG) and endocannabinoid-like molecules (OEA & PEA) were measured by LCF-MS/MS in plasma, skeletal muscle, and adipose tissue, while the expression of genes coding for the ECS were investigated by quantitative reverse transcription PCR (RT-qPCR). RESULTS: Sarcopenia in old rats was exemplified by a 49% decrease in hindlimb muscle mass (P < 0.01), which was associated with severe impairment of isometric torque, power, voluntary locomotor activity, motor coordination, and gait quality. Sarcopenia was associated with (1) increased 2-AG (+32%, P = 0.07) and reduced PEA and OEA levels in the plasma (-25% and -40%, respectively, P < 0.01); (2) an increased content of AEA, PEA, and OEA in subcutaneous adipose tissue (P < 0.01); and (3) a four-fold increase of 2-AG content in the soleus (P < 0.01) and a reduced OEA content in EDL (-80%, P < 0.01). These alterations were associated with profound modifications in the expression of the ECS genes in the adipose tissue and skeletal muscle. CONCLUSIONS: Taken together, these findings demonstrate that circulating and peripheral tissue endocannabinoid tone are altered in sarcopenia. They also demonstrate that OEA plasma levels are associated with skeletal muscle function and loss of locomotor activity in rats, suggesting OEA could be used as a circulating biomarker for sarcopenia.


Asunto(s)
Resistencia a la Insulina , Sarcopenia , Animales , Endocannabinoides/metabolismo , Masculino , Obesidad , Ratas , Espectrometría de Masas en Tándem
8.
Commun Biol ; 5(1): 1288, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434267

RESUMEN

Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.


Asunto(s)
Sarcopenia , Deficiencia de Vitamina D , Humanos , Ratones , Ratas , Animales , Anciano , Vitamina D/farmacología , Vitamina D/metabolismo , Sarcopenia/metabolismo , Deficiencia de Vitamina D/metabolismo , Deficiencia de Vitamina D/patología , Músculo Esquelético/patología , Mitocondrias/metabolismo , Estrés Oxidativo
9.
Front Physiol ; 12: 749049, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111075

RESUMEN

The phenotype of sarcopenic obesity is frequently associated with impaired muscle strength and performance. Ectopic lipid deposition may interfere with muscle anabolic response especially during aging. Evidence is scarce concerning the potential interplay among aging and nutrient imbalance on skeletal muscle functionality. The objective of the present study was to investigate the impact of protein intake in the context of an obesogenic diet on skeletal muscle functional properties and intramuscular lipid infiltration. Two groups of forty-two adult and thirty-seven old male Wistar rats were randomly divided into four groups: isocaloric standard diet (12% protein, 14% lipid, as ST12); isocaloric standard (high-protein) diet (25% protein, 14% lipid, ST25); hypercaloric high-fat (normal-protein) diet (12% protein, 45% lipid, HF12); and hypercaloric high-fat (high-protein) diet (25% protein, 45% lipid, HF25). The nutritional intervention lasted 10 weeks. Total body composition was measured through Echo-MRI. Lipids were extracted from tibialis anterior muscle and analyzed by gas-liquid chromatography. The functional properties of the plantarflexor muscles were evaluated in vivo on an isokinetic dynamometer. Maximal torque was assessed from the torque-frequency relationship in isometric condition and maximal power was evaluated from the torque-velocity relationship in concentric condition. In adult rats high-protein intake combined with high-fat diet determined a lower decrease in relative isometric torque, normalized to either FFM or body weight, compared with adult rats fed a high-fat normal-protein diet. High-fat diet was also detrimental to relative muscle power, as normalized to body weight, that decreased to a larger extent in adult rats fed a high-fat normal-protein diet than their counterparts fed a normal-fat, high-protein diet. The effect of high-fat diet observed in adults, with the enhanced protein intake (25%) conferring some kind of protection against the negative effects of HFD, may be linked to the reduced intramuscular fat in this group, which may have contributed to preserve, at least partly, the contractile properties. A potential role for high-protein diet in preventing ectopic lipid deposition needs to be explored in future research. Detrimental effects of high- fat diet on skeletal muscle performance are mitigated by high- protein intake in adult rats but not in old rats.

10.
Nutrients ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959786

RESUMEN

Plant proteins are attracting rising interest due to their pro-health benefits and environmental sustainability. However, little is known about the nutritional value of pea proteins when consumed by older people. Herein, we evaluated the digestibility and nutritional efficiency of pea proteins compared to casein and whey proteins in old rats. Thirty 20-month-old male Wistar rats were assigned to an isoproteic and isocaloric diet containing either casein (CAS), soluble milk protein (WHEY) or Pisane™ pea protein isolate for 16 weeks. The three proteins had a similar effect on nitrogen balance, true digestibility and net protein utilization in old rats, which means that different protein sources did not alter body composition, tissue weight, skeletal muscle protein synthesis or degradation. Muscle mitochondrial activity, inflammation status and insulin resistance were similar between the three groups. In conclusion, old rats used pea protein with the same efficiency as casein or whey proteins, due to its high digestibility and amino acid composition. Using these plant-based proteins could help older people diversify their protein sources and more easily achieve nutritional intake recommendations.


Asunto(s)
Anabolizantes/farmacología , Proteínas de la Leche/farmacología , Proteínas Musculares/metabolismo , Proteínas de Guisantes/farmacología , Aminoácidos/metabolismo , Animales , Caseínas/farmacología , Digestión/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Valor Nutritivo , Proteolisis/efectos de los fármacos , Ratas , Ratas Wistar , Proteína de Suero de Leche/farmacología
11.
J Clin Invest ; 117(2): 387-96, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17273556

RESUMEN

The most common pathology associated with obesity is insulin resistance, which results in the onset of type 2 diabetes mellitus. Several studies have implicated the mammalian target of rapamycin (mTOR) signaling pathway in obesity. Eukaryotic translation initiation factor 4E-binding (eIF4E-binding) proteins (4E-BPs), which repress translation by binding to eIF4E, are downstream effectors of mTOR. We report that the combined disruption of 4E-BP1 and 4E-BP2 in mice increased their sensitivity to diet-induced obesity. Increased adiposity was explained at least in part by accelerated adipogenesis driven by increased expression of CCAAT/enhancer-binding protein delta (C/EBPdelta), C/EBPalpha, and PPARgamma coupled with reduced energy expenditure, reduced lipolysis, and greater fatty acid reesterification in the adipose tissue of 4E-BP1 and 4E-BP2 double KO mice. Increased insulin resistance in 4E-BP1 and 4E-BP2 double KO mice was associated with increased ribosomal protein S6 kinase (S6K) activity and impairment of Akt signaling in muscle, liver, and adipose tissue. These data clearly demonstrate the role of 4E-BPs as a metabolic brake in the development of obesity and reinforce the idea that deregulated mTOR signaling is associated with the development of the metabolic syndrome.


Asunto(s)
Factores Eucarióticos de Iniciación/deficiencia , Resistencia a la Insulina/fisiología , Obesidad/etiología , Fosfoproteínas/deficiencia , Proteínas Adaptadoras Transductoras de Señales , Adipogénesis , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Cartilla de ADN/genética , Dieta/efectos adversos , Factores Eucarióticos de Iniciación/genética , Humanos , Resistencia a la Insulina/genética , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Síndrome Metabólico/etiología , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Mutantes , Obesidad/genética , Obesidad/fisiopatología , Fosfoproteínas/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR
12.
Mediators Inflamm ; 2010: 823486, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20339530

RESUMEN

It was recently demonstrated that TLR4 activation via dietary lipids triggers inflammatory pathway and alters insulin responsiveness in the fat tissue during obesity. Here, we question whether other TLR family members could participate in the TLR-mediated inflammatory processes occurring in the obese adipose tissue. We thus studied the expression of TLR1, TLR2, TLR4, and TLR6 in adipose tissue. These receptors are expressed in omental and subcutaneous human fat tissue, the expression being higher in the omental tissue, independently of the metabolic status of the subject. We demonstrated a correlation of TLRs expression within and between each depot suggesting a coregulation. Murine 3T3-L1 preadipocyte cells stimulated with Pam3CSK4 induced the expression of some proinflammatory markers. Therefore, beside TLR4, other toll-like receptors are differentially expressed in human fat tissue, and functional in an adipocyte cell line, suggesting that they might participate omental adipose tissue-related inflammation that occurs in obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Receptores Toll-Like/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adulto , Animales , Estudios de Casos y Controles , Diferenciación Celular , Femenino , Expresión Génica , Humanos , Inflamación/genética , Lipopéptidos/farmacología , Ratones , Persona de Mediana Edad , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 6/genética , Receptor Toll-Like 6/metabolismo , Receptores Toll-Like/genética
13.
Nutrients ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485842

RESUMEN

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Asunto(s)
Ingestión de Alimentos/fisiología , Fenómenos Fisiológicos Nutricionales del Anciano/fisiología , Fabaceae , Proteínas de la Leche/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetales Comestibles/administración & dosificación , Proteínas/metabolismo , Triticum , Factores de Edad , Proteínas Dietéticas Animales/administración & dosificación , Proteínas Dietéticas Animales/metabolismo , Animales , Caseínas/administración & dosificación , Caseínas/metabolismo , Masculino , Proteínas de la Leche/metabolismo , Proteínas de Vegetales Comestibles/metabolismo , Proteolisis , Ratas Wistar
14.
J Cachexia Sarcopenia Muscle ; 10(3): 696-709, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30927336

RESUMEN

BACKGROUND: Sarcopenia is the loss of muscle mass/function that occurs during the aging process. The links between mechanistic target of rapamycin (mTOR) activity and muscle development are largely documented, but the role of its downstream targets in the development of sarcopenia is poorly understood. Eukaryotic initiation factor 4E-binding proteins (4E-BPs) are targets of mTOR that repress mRNA translation initiation and are involved in the control of several physiological processes. However, their role in skeletal muscle is still poorly understood. The goal of this study was to assess how loss of 4E-BP1 and 4E-BP2 expression impacts skeletal muscle function and homeostasis in aged mice and to characterize the associated metabolic changes by metabolomic and lipidomic profiling. METHODS: Twenty-four-month-old wild-type and whole body 4E-BP1/4E-BP2 double knockout (DKO) mice were used to measure muscle mass and function. Protein homeostasis was measured ex vivo in extensor digitorum longus by incorporation of l-[U-14 C]phenylalanine, and metabolomic and lipidomic profiling of skeletal muscle was performed by Metabolon, Inc. RESULTS: The 4E-BP1/2 DKO mice exhibited an increase in muscle mass that was associated with increased grip strength (P < 0.05). Protein synthesis was higher under both basal (+102%, P < 0.05) and stimulated conditions (+65%, P < 0.05) in DKO skeletal muscle. Metabolomic and complex lipid analysis of skeletal muscle revealed robust differences pertaining to amino acid homeostasis, carbohydrate abundance, and certain aspects of lipid metabolism. In particular, levels of most free amino acids were lower within the 4E-BP1/2 DKO muscle. Interestingly, although glucose levels were unchanged, differences were observed in the isobaric compound maltitol/lactitol (33-fold increase, P < 0.01) and in several additional carbohydrate compounds. 4E-BP1/2 depletion also resulted in accumulation of medium-chain acylcarnitines and a 20% lower C2/C0 acylcarnitine ratio (P < 0.01) indicative of reduced ß-oxidation. CONCLUSIONS: Taken together, these findings demonstrate that deletion of 4E-BPs is associated with perturbed energy metabolism in skeletal muscle and could have beneficial effects on skeletal muscle mass and function in aging mice. They also identify 4E-BPs as potential targets for the treatment of sarcopenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , Sarcopenia/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Aminoácidos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Factores Eucarióticos de Iniciación/genética , Humanos , Metabolismo de los Lípidos/genética , Masculino , Metabolómica , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Proteostasis/genética , Sarcopenia/genética , Sarcopenia/terapia , Transducción de Señal/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-18329346

RESUMEN

A method was developed by using gas chromatography-mass spectrometry in the electron impact ionization mode to quantify citrulline in plasma, red blood cells (RBC) and urine. For all three fluids, citrulline was extracted on ion exchange resins, before derivatization to its propyl-heptaflorobutyryl-ester. Assay precision (coefficient of variation, CV) was <5%, recovery% was >90% and the within- and between-day CV were <10% on 200 microL of plasma and RBC, and 400 microL of urine. The current method allows for the detection of 20 pmol of natural citrulline in aqueous standards, and small volumes (<100 microL) of biological fluids.


Asunto(s)
Citrulina/sangre , Eritrocitos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Orina/química , Calibración , Humanos , Reproducibilidad de los Resultados
16.
Clin Nutr ; 26(2): 231-8, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17097772

RESUMEN

BACKGROUND, AIMS & METHODS: To determine whether depletion in plasma glutamine worsens the catabolic response to corticosteroids, seven healthy volunteers received oral prednisone for 6 days on two separate occasions, at least 2 weeks apart, and in random order. On the sixth day of each treatment course, they received 5 h intravenous infusions of L-[1-(14)C]-leucine and L-[1-(13)C]-glutamine in the postabsorptive state (1) under baseline conditions (prednisone only day) and (2) after 24h of treatment with phenylbutyrate (prednisone+phenylbutyrate day), a glutamine chelating agent. RESULTS: Phenylbutyrate treatment was associated with (1) an approximately 15% decline in plasma glutamine concentration (627+/-39 vs. 530+/-31 micromol l(-1); P<0.05), (2) no change in leucine appearance rate, an index of protein breakdown (124+/-9 vs. 128+/-9 micromol kg(-1) h(-1); NS) nor in non-oxidative leucine disposal, an index of whole body protein synthesis (94+/-9 vs. 91+/-7 micromol kg(-1) h(-1); NS), and (3) a approximately 25% rise in leucine oxidation (30+/-1 vs. 38+/-2 micromol kg(-1) h(-1), P<0.05), despite an approximately 25% decline (P<0.05) in leucine concentration. CONCLUSIONS: In a model of mild, stress-induced protein catabolism, depletion of plasma glutamine per se may worsen branched chain amino acid and protein wasting.


Asunto(s)
Glucocorticoides/metabolismo , Glutamina/sangre , Leucina/metabolismo , Fenilbutiratos/farmacología , Prednisona/metabolismo , Proteínas/metabolismo , Adolescente , Adulto , Isótopos de Carbono , Estudios Cruzados , Femenino , Glucocorticoides/administración & dosificación , Glutamina/metabolismo , Humanos , Cinética , Masculino , Oxidación-Reducción , Prednisona/administración & dosificación , Biosíntesis de Proteínas
17.
Mol Nutr Food Res ; 61(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28544394

RESUMEN

SCOPE: In recent years, several studies reported the role of eIF4E-binding proteins (4E-BPs) on the development of diet-induced obesity and insulin resistance. Our aim was to investigate the effect of 4E-BP protein deletion on lipid accumulation and metabolism in skeletal muscle in response to a high-fat diet induced obesity in 4E-BP1/2 DKO mice. METHODS AND RESULTS: Diet-induced obesity engendered increased ectopic accumulation of lipotoxic species in skeletal muscle of 4E-BP1 and 4E-BP2 double knockout mice (4E-BP1/2 DKO), namely diacylglycerols and ceramides. Increased lipid accumulation was associated with alterations in the expression of genes involved in fatty acid transport (FATP, CD36), diacylglycerol/triacylglycerol biosynthesis (GPAT1, AGPAT1, DGAT1), and ß-oxidation (CPT1b, MCAD). Diet-induced obesity resulted in increased lean mass and muscle in 4E-BP1/2 DKO mice despite the development of a more severe systemic insulin resistance. Since increased expression of genes of several proteolytic systems (MuRF1, atrogin/MAFbx, and cathepsin-l) in 4EBP1/2 DKO skeletal muscle was reported, the increase of skeletal muscle mass in 4E-BP1/2 DKO mice suggests that ablation of 4E-BPs compensate with activation of muscle anabolism. CONCLUSIONS: These findings indicate that 4E-BP proteins may prevent excess lipid accumulation in skeletal muscle and suggest that 4E-BPs are key regulators of muscle homeostasis regardless of insulin sensitivity.


Asunto(s)
Proteínas Portadoras/fisiología , Factores Eucarióticos de Iniciación/fisiología , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Fosfoproteínas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular , Dieta Alta en Grasa , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteostasis
18.
Med Sci (Paris) ; 22(5): 514-8, 2006 May.
Artículo en Francés | MEDLINE | ID: mdl-16687120

RESUMEN

Gene regulation by transcriptional and post-translational mechanisms is implicated in the regulation of cellular homeostasis. Transcriptional deregulation has been largely documented in the etiology of diseases such as cancer, obesity and diabetes. During the past decade, the control of translation initiation by the PI3K/Akt/mTOR pathway in the development of these pathologies has been documented. Rapamycin, a specific inhibitor of mTOR, demonstrates considerable anti-proliferative activity against numerous cancer types. Recent studies also demonstrated that rapamycin may be beneficial in the treatment of obesity and diabetes. Rapamycin and its analogs seem destined for a promising future and will help in the development of novel therapeutic strategies.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteínas Quinasas/fisiología , Animales , Diabetes Mellitus/genética , Humanos , Neoplasias/genética , Obesidad/genética , Serina-Treonina Quinasas TOR
19.
J Endocrinol ; 216(1): 21-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23092880

RESUMEN

Regulated associated protein of mTOR (Raptor) and rapamycin-insensitive companion of mTOR (rictor) are two proteins that delineate two different mTOR complexes, mTORC1 and mTORC2 respectively. Recent studies demonstrated the role of rictor in the development and function of ß-cells. mTORC1 has long been known to impact ß-cell function and development. However, most of the studies evaluating its role used either drug treatment (i.e. rapamycin) or modification of expression of proteins known to modulate its activity, and the direct role of raptor in insulin secretion is unclear. In this study, using siRNA, we investigated the role of raptor and rictor in insulin secretion and production in INS-1 cells and the possible cross talk between their respective complexes, mTORC1 and mTORC2. Reduced expression of raptor is associated with increased glucose-stimulated insulin secretion and intracellular insulin content. Downregulation of rictor expression leads to impaired insulin secretion without affecting insulin content and is able to correct the increased insulin secretion mediated by raptor siRNA. Using dominant-negative or constitutively active forms of Akt, we demonstrate that the effect of both raptor and rictor is mediated through alteration of Akt signaling. Our finding shed new light on the mechanism of control of insulin secretion and production by the mTOR, and they provide evidence for antagonistic effect of raptor and rictor on insulin secretion in response to glucose by modulating the activity of Akt, whereas only raptor is able to control insulin biosynthesis.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sustitución de Aminoácidos , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Humanos , Hiperglucemia/metabolismo , Secreción de Insulina , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Proteínas Mutantes/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas/antagonistas & inhibidores , Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Serina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
20.
J Endocrinol ; 214(2): 225-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22582094

RESUMEN

Zinc ions are essential for the formation of insulin crystals in pancreatic ß cells, thereby contributing to packaging efficiency of stored insulin. Zinc fluxes are regulated through the SLC30A (zinc transporter, ZNT) family. Here, we investigated the effect of metabolic stress associated with the prediabetic state (zinc depletion, glucotoxicity, and lipotoxicity) on ZNT expression and human pancreatic islet function. Both zinc depletion and lipotoxicity (but not glucotoxicity) downregulated ZNT8 (SLC30A8) expression and altered the glucose-stimulated insulin secretion index (GSIS). ZNT8 overexpression in human islets protected them from the decrease in GSIS induced by tetrakis-(2-pyridylmethyl) ethylenediamine and palmitate but not from cell death. In addition, zinc supplementation decreased palmitate-induced human islet cell death without restoring GSIS. Altogether, we showed that ZNT8 expression responds to variation in zinc and lipid levels in human ß cells, with repercussions on insulin secretion. Prospects for increasing ZNT8 expression and/or activity may prove beneficial in type 2 diabetes in humans.


Asunto(s)
Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/fisiología , Islotes Pancreáticos/metabolismo , Adulto , Proteínas de Transporte de Catión/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Células Cultivadas , Quelantes/farmacología , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/fisiología , Lípidos/farmacología , Lípidos/toxicidad , Ácido Palmítico/farmacología , Ácido Palmítico/toxicidad , Transfección , Zinc/farmacología , Transportador 8 de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA