RESUMEN
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Asunto(s)
Melaninas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Temblor/complicaciones , Radioisótopos de Carbono/metabolismo , Tomografía de Emisión de Positrones , Norepinefrina/metabolismo , Locus Coeruleus/metabolismo , Imagen por Resonancia MagnéticaRESUMEN
PURPOSE: F13640 (a.k.a. befiradol, NLX-112) is a highly selective 5-HT1A receptor ligand that was selected as a PET radiopharmaceutical-candidate based on animal studies. Due to its high efficacy agonist properties, [18F]F13640 binds preferentially to functional 5-HT1A receptors, which are coupled to intracellular G-proteins. Here, we characterize brain labeling of 5-HT1A receptors by [18F]F13640 in humans and describe a simplified model for its quantification. METHODS: PET/CT and PET-MRI scans were conducted in a total of 13 healthy male volunteers (29 ± 9 years old), with arterial input functions (AIF) (n = 9) and test-retest protocol (n = 8). Several kinetic models were compared (one tissue compartment model, two-tissue compartment model, and Logan); two models with reference region were also evaluated: simplified reference tissue model (SRTM) and the logan reference model (LREF). RESULTS: [18F]F13640 showed high uptake values in raphe nuclei and cortical regions. SRTM and LREF models showed a very high correlation with kinetic models using AIF. As concerns test-retest parameters and the prolonged binding kinetics of [18F]F13640, better reproducibility, and reliability were found with the LREF method. Cerebellum white matter and frontal lobe white matter stand out as suitable reference regions. CONCLUSION: The favorable brain labeling and kinetic profile of [18F]F13640, its high receptor specificity and its high efficacy agonist properties open new perspectives for studying functionally active 5-HT1A receptors, unlike previous radiopharmaceuticals that act as antagonists. [18F]F13640's kinetic properties allow injection outside of the PET scanner with delayed acquisitions, facilitating the design of innovative longitudinal protocols in neurology and psychiatry. TRIAL REGISTRATION: Trial Registration EudraCT 2017-002,722-21.
Asunto(s)
Radiofármacos , Serotonina , Animales , Humanos , Masculino , Adulto Joven , Adulto , Radiofármacos/metabolismo , Reproducibilidad de los Resultados , Serotonina/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodosRESUMEN
PURPOSE: Imaging of acute lung inflammation is pivotal to evaluate innovative ventilation strategies. We aimed to develop and validate a three-tissue compartment kinetic model (3TCM) of [11C](R)-PK11195 lung uptake in experimental acute respiratory distress syndrome (ARDS) to help quantify macrophagic inflammation, while accounting for the impact of its non-specific and irreversible uptake in lung tissues. MATERIAL AND METHODS: We analyzed the data of 38 positron emission tomography (PET) studies performed in 21 swine with or without experimental ARDS, receiving general anesthesia and mechanical ventilation. Model input function was a plasma, metabolite-corrected, image-derived input function measured in the main pulmonary artery. Regional lung analysis consisted in applying both the 3TCM and the two-tissue compartment model (2TCM); in each region, the best model was selected using a selection algorithm with a goodness-of-fit criterion. Regional best model binding potentials (BPND) were compared to lung macrophage presence, semi-quantified in pathology. RESULTS: The 3TCM was preferred in 142 lung regions (62%, 95% confidence interval: 56 to 69%). BPND determined by the 2TCM was significantly higher than the value computed with the 3TCM (overall median with interquartile range: 0.81 [0.44-1.33] vs. 0.60 [0.34-0.94], p < 0.02). Regional macrophage score was significantly associated with the best model BPND (p = 0.03). Regional BPND was significantly increased in the hyperinflated lung compartment, compared to the normally aerated one (median with interquartile range: 0.8 [0.6-1.7] vs. 0.6 [0.3-0.8], p = 0.03). CONCLUSION: To assess the intensity and spatial distribution of acute macrophagic lung inflammation in the context of experimental ARDS with mechanical ventilation, PET quantification of [11C](R)-PK11195 lung uptake was significantly improved in most lung regions using the 3TCM. This new methodology offers the opportunity to non-invasively evaluate innovative ventilatory strategies aiming at controlling acute lung inflammation.
Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Animales , Humanos , Isoquinolinas , Macrófagos , Neumonía/complicaciones , Neumonía/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Porcinos , Tomografía Computarizada por Rayos X/métodosRESUMEN
BACKGROUND: Previous studies have suggested the role of microcalcifications in plaque vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological criteria of vulnerability. METHODS AND RESULTS: We included 12 patients with either recently symptomatic or asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-background ratio (TBR) was measured in culprit and nonculprit (including contralateral plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also collected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vulnerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase (TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial walls did not differ between symptomatic and asymptomatic patients. CONCLUSIONS: 18F-NaF PET/MRI may be a promising tool for providing additional insights into the plaque vulnerability.
Asunto(s)
Calcinosis , Estenosis Carotídea , Placa Aterosclerótica , Calcinosis/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Placa Aterosclerótica/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Fluoruro de SodioRESUMEN
BACKGROUND: Parkinson's disease (PD) is characterized by heterogeneous motor and nonmotor manifestations related to alterations in monoaminergic neurotransmission systems. Nevertheless, the characterization of concomitant dopaminergic and serotonergic dysfunction after different durations of Parkinson's disease, as well as their respective involvement in the expression and severity of neuropsychiatric signs, has gained little attention so far. METHODS: To fill this gap, we conducted a cross-sectional study combining clinical and dual-tracer positron emission tomography (PET) neuroimaging approaches, using radioligands of dopamine ([11 C]-N-(3-iodoprop-2E-enyl)-2-beta-carbomethoxy-3-beta-(4-methylphenyl)-nortropane) ([11 C]PE2I) and serotonin ([11 C]-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio)-benzylamine) ([11 C]DASB) reuptake, after different durations of Parkinson's disease (ie, in short-disease duration drug-naive de novo (n = 27, 0-2 years-duration), suffering from apathy (n = 14) or not (n = 13); intermediate-disease duration (n = 15, 4-7 years-duration) and long-disease duration, non-demented (n = 15, 8-10 years-duration) patients). Fifteen age-matched healthy subjects were also enrolled. RESULTS: The main findings are threefold: (1) both dopaminergic and serotonergic lesions worsen with the duration of Parkinson's disease, spreading from midbrain/subcortical to cortical regions; (2) the presence of apathy at PD onset is associated with more severe cortical and subcortical serotonergic and dopaminergic disruption, similar to the denervation pattern observed in intermediate-disease duration patients; and (3) the severity of parkinsonian apathy, depression, and trait-anxiety appears primarily related to serotonergic alteration within corticostriatal limbic areas. CONCLUSIONS: Altogether, these findings highlight the prominent role of serotonergic degeneration in the expression of several neuropsychiatric symptoms occurring after different durations of Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.
Asunto(s)
Apatía , Enfermedad de Parkinson , Ansiedad , Estudios Transversales , Dopamina , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones/métodosRESUMEN
A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.
Asunto(s)
Dopamina/metabolismo , Corteza Prefrontal/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Estriado Ventral/metabolismo , Adulto , Análisis de Varianza , Antagonistas de Dopamina/farmacocinética , Método Doble Ciego , Femenino , Lateralidad Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/efectos de los fármacos , Racloprida/farmacocinética , Factores de Tiempo , Estriado Ventral/diagnóstico por imagen , Estriado Ventral/fisiología , Adulto JovenRESUMEN
Oxytocin (OT), a neuropeptide involved in affiliation has been shown to enhance social skills in patients with autism spectrum disorders (ASD). Nevertheless, OT improvements seem ephemeral. Animal research has demonstrated OT action on serotonin (5-HT), an interaction that we also found in the healthy human brain. Whether such synaptic interplay also occurs in ASD patients is unknown. To address this issue, we mapped the effects of intranasal OT on 5-HT in 18 patients with ASD and 24 healthy controls (HC) in a double blind, placebo controlled, within subject PET-scan experiment. Each participant underwent two scans: baseline and spray (OT or placebo). Using the radiotracer [18 F]MPPF, marking the 5-HT 1A receptor (5-HT1AR), we measured MPPF-Binding Potential (BP) as an index of OT-induced serotonin functional modulation. At baseline ASD patients did not differ from controls for 5-HT1AR concentration and distribution. However, while OT significantly increased MPPF BP in several brain regions of HC, no changes were observed in the ASD group. Serotonin serum concentration analysis corroborated these results. Our findings suggest a disturbed OT-serotonin interaction in autism. This may limit the potential benefits of OT in these patients and open the ways to investigate combined OT-serotonin treatments.
Asunto(s)
Trastorno del Espectro Autista/metabolismo , Encéfalo/efectos de los fármacos , Oxitocina/administración & dosificación , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/sangre , Transmisión Sináptica/efectos de los fármacos , Administración Intranasal , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/metabolismo , Método Doble Ciego , Humanos , Masculino , Tomografía de Emisión de Positrones , Adulto JovenRESUMEN
SEE SCHRAG AND POLITIS DOI101093/AWW190 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Apathy, which can occur separately or in combination with depression and anxiety, is one of the most frequently encountered neuropsychiatric symptoms in Parkinson's disease. Pathophysiological evidence suggests that parkinsonian apathy is primarily due to a mesolimbic dopaminergic denervation, but the role of the serotonergic alteration has never been examined, despite its well-known involvement in the pathogenesis of depression and anxiety. To fill this gap, we address here the pure model of de novo Parkinson's disease, without the confounding effects of antiparkinsonian treatment. Fifteen apathetic (Lille Apathy Rating Scale scores ≥ -21) and 15 non-apathetic (-36 ≤ Lille Apathy Rating Scale scores ≤ -22) drug-naïve de novo parkinsonian patients were enrolled in the present study and underwent detailed clinical assessment and positron emission tomography imaging, using both dopaminergic [(11)C-N-(3-iodoprop-2E-enyl)-2-beta-carbomethoxy-3-beta-(4-methylphenyl)-nortropane (PE2I)] (n = 29) and serotonergic [(11)C-N,N-dimethyl-2-(-2-amino-4-cyanophenylthio)-benzylamine (DASB)] (n = 27) presynaptic transporter radioligands. Apathetic parkinsonian patients presented higher depression (P = 0.0004) and anxiety (P = 0.004) scores - as assessed using the Beck Depression Inventory and the part B of the State-Trait Anxiety Inventory, respectively - compared to the non-apathetic ones - who were not different from the age-matched healthy subjects (n = 15). Relative to the controls, the non-apathetic parkinsonian patients mainly showed dopaminergic denervation (n = 14) within the right caudate nucleus, bilateral putamen, thalamus and pallidum, while serotonergic innervation (n = 15) was fairly preserved. Apathetic parkinsonian patients exhibited, compared to controls, combined and widespread dopaminergic (n = 15) and serotonergic (n = 12) degeneration within the bilateral caudate nuclei, putamen, ventral striatum, pallidum and thalamus, but also a specific bilateral dopaminergic disruption within the substantia nigra-ventral tegmental area complex, as well as a specific serotonergic alteration within the insula, the orbitofrontal and the subgenual anterior cingulate cortices. When comparing the two parkinsonian groups, the apathetic patients mainly displayed greater serotonergic alteration in the ventral striatum, the dorsal and the subgenual parts of the anterior cingulate cortices, bilaterally, as well as in the right-sided caudate nucleus and the right-sided orbitofrontal cortex. Regression analyses also revealed that the severity of apathy was moreover mainly related to specific serotonergic lesions within the right-sided anterior caudate nucleus and the orbitofrontal cortex, while the degree of both depression and anxiety was primarily linked to serotonergic disruption within the bilateral subgenual parts and/or the right dorsal part of the anterior cingulate cortex, without prominent role of the dopaminergic degeneration in the pathogenesis of these three non-motor signs. Altogether, these findings highlight a prominent role of the serotonergic degeneration in the expression of the neuropsychiatric symptoms occurring at the onset of Parkinson's disease.
Asunto(s)
Ansiedad , Apatía/fisiología , Depresión , Enfermedad de Parkinson , Tomografía de Emisión de Positrones/métodos , Serotonina/metabolismo , Adulto , Anciano , Ansiedad/diagnóstico por imagen , Ansiedad/etiología , Ansiedad/metabolismo , Ansiedad/fisiopatología , Depresión/diagnóstico por imagen , Depresión/etiología , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatologíaRESUMEN
Serotonin (5-HT) and oxytocin (OXT) are two neuromodulators involved in human affect and sociality and in disorders like depression and autism. We asked whether these chemical messengers interact in the regulation of emotion-based behavior by administering OXT or placebo to 24 healthy subjects and mapping cerebral 5-HT system by using 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[(18)F]fluoro-benzamidoethylpiperazine ([(18)F]MPPF), an antagonist of 5-HT1A receptors. OXT increased [(18)F]MPPF nondisplaceable binding potential (BPND) in the dorsal raphe nucleus (DRN), the core area of 5-HT synthesis, and in the amygdala/hippocampal complex, insula, and orbitofrontal cortex. Importantly, the amygdala appears central in the regulation of 5-HT by OXT: [(18)F]MPPF BPND changes in the DRN correlated with changes in right amygdala, which were in turn correlated with changes in hippocampus, insula, subgenual, and orbitofrontal cortex, a circuit implicated in the control of stress, mood, and social behaviors. OXT administration is known to inhibit amygdala activity and results in a decrease of anxiety, whereas high amygdala activity and 5-HT dysregulation have been associated with increased anxiety. The present study reveals a previously unidentified form of interaction between these two systems in the human brain, i.e., the role of OXT in the inhibitory regulation of 5-HT signaling, which could lead to novel therapeutic strategies for mental disorders.
Asunto(s)
Encéfalo/metabolismo , Oxitocina/farmacología , Serotonina/metabolismo , Administración Intranasal , Adulto , Amígdala del Cerebelo/metabolismo , Unión Competitiva/efectos de los fármacos , Método Doble Ciego , Lóbulo Frontal/metabolismo , Giro del Cíngulo/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Oxitocina/administración & dosificación , Piperazinas/metabolismo , Tomografía de Emisión de Positrones , Piridinas/metabolismo , Núcleos del Rafe/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Antagonistas del Receptor de Serotonina 5-HT1/administración & dosificación , Antagonistas del Receptor de Serotonina 5-HT1/farmacología , Transducción de Señal/efectos de los fármacos , Adulto JovenRESUMEN
The (benzenesulfonyl)difluoromethylsulfanyl (PhSO2CF2S) group is a valuable substituent with specific properties which can provide access to new applications of fluoroalkylthiolated compounds. Direct introduction of this moiety can be performed by in an electrophilic manner by using a new shelf-stable reagent, namely a (benzenesulfonyl)difluoromethanesulfenamide. Furthermore, mild magnesium-mediated reduction of the PhSO2CF2S group leads to a facile synthesis of difluoromethylthiolated molecules and their deuterated analogs.
RESUMEN
Gait disturbances, including freezing of gait, are frequent and disabling symptoms of Parkinson's disease. They often respond poorly to dopaminergic treatments. Although recent studies have shed some light on their neural correlates, their modulation by dopaminergic treatment remains quite unknown. Specifically, the influence of levodopa on the networks involved in motor imagery (MI) of parkinsonian gait has not been directly studied, comparing the off and on medication states in the same patients. We therefore conducted an [H2 (15) 0] Positron emission tomography study in eight advanced parkinsonian patients (mean disease duration: 12.3 ± 3.8 years) presenting with levodopa-responsive gait disorders and FoG, and eight age-matched healthy subjects. All participants performed three tasks (MI of gait, visual imagery and a control task). Patients were tested off, after an overnight withdrawal of all antiparkinsonian treatment, and on medication, during consecutive mornings. The order of conditions was counterbalanced between subjects and sessions. Results showed that imagined gait elicited activations within motor and frontal associative areas, thalamus, basal ganglia and cerebellum in controls. Off medication, patients mainly activated premotor-parietal and pontomesencephalic regions. Levodopa increased activation in motor regions, putamen, thalamus, and cerebellum, and reduced premotor-parietal and brainstem involvement. Areas activated when patients are off medication may represent compensatory mechanisms. The recruitment of these accessory circuits has also been reported for upper-limb movements in Parkinson's disease, suggesting a partly overlapping pathophysiology between imagined levodopa-responsive gait disorders and appendicular signs. Our results also highlight a possible cerebellar contribution in the pathophysiology of parkinsonian gait disorders through kinesthetic imagery.
Asunto(s)
Antiparkinsonianos/farmacología , Encéfalo/efectos de los fármacos , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Levodopa/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Anciano , Encéfalo/fisiopatología , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Imaginación/fisiología , Cinestesia/fisiología , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Tomografía de Emisión de PositronesRESUMEN
Alterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism. We used a brain bank tissue from a rat and a macaque model of Parkinson's disease (PD). We then investigated its in vivo PET imaging regulation in a cohort of macaques. Dopaminergic depletion increases striatal 5-HT4R in the two models, further augmented after dyskinesia-inducing L-Dopa. Pending confirmation in PD patients, the 5-HT4R might offer a therapeutic target for dampening PD's symptoms.
Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Receptores de Serotonina 5-HT4/uso terapéutico , Discinesia Inducida por Medicamentos/diagnóstico por imagen , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Levodopa/uso terapéutico , Modelos Animales de Enfermedad , Oxidopamina , Antiparkinsonianos/uso terapéuticoRESUMEN
UNLABELLED: MRI templates and digital atlases are needed for automated and reproducible quantitative analysis of non-human primate PET studies. Segmenting brain images via multiple atlases outperforms single-atlas labelling in humans. We present a set of atlases manually delineated on brain MRI scans of the monkey Macaca fascicularis. We use this multi-atlas dataset to evaluate two automated methods in terms of accuracy, robustness and reliability in segmenting brain structures on MRI and extracting regional PET measures. METHODS: Twelve individual Macaca fascicularis high-resolution 3DT1 MR images were acquired. Four individual atlases were created by manually drawing 42 anatomical structures, including cortical and sub-cortical structures, white matter regions, and ventricles. To create the MRI template, we first chose one MRI to define a reference space, and then performed a two-step iterative procedure: affine registration of individual MRIs to the reference MRI, followed by averaging of the twelve resampled MRIs. Automated segmentation in native space was obtained in two ways: 1) Maximum probability atlases were created by decision fusion of two to four individual atlases in the reference space, and transformation back into the individual native space (MAXPROB)(.) 2) One to four individual atlases were registered directly to the individual native space, and combined by decision fusion (PROPAG). Accuracy was evaluated by computing the Dice similarity index and the volume difference. The robustness and reproducibility of PET regional measurements obtained via automated segmentation was evaluated on four co-registered MRI/PET datasets, which included test-retest data. RESULTS: Dice indices were always over 0.7 and reached maximal values of 0.9 for PROPAG with all four individual atlases. There was no significant mean volume bias. The standard deviation of the bias decreased significantly when increasing the number of individual atlases. MAXPROB performed better when increasing the number of atlases used. When all four atlases were used for the MAXPROB creation, the accuracy of morphometric segmentation approached that of the PROPAG method. PET measures extracted either via automatic methods or via the manually defined regions were strongly correlated, with no significant regional differences between methods. Intra-class correlation coefficients for test-retest data were over 0.87. CONCLUSIONS: Compared to single atlas extractions, multi-atlas methods improve the accuracy of region definition. They also perform comparably to manually defined regions for PET quantification. Multiple atlases of Macaca fascicularis brains are now available and allow reproducible and simplified analyses.
Asunto(s)
Anatomía Artística , Atlas como Asunto , Encéfalo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Multimodal/métodos , Animales , Encéfalo/fisiología , Femenino , Cinética , Macaca fascicularis , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de PositronesRESUMEN
OBJECTIVE: Tuberous sclerosis complex (TSC) is often associated with cerebral tubers and medically intractable epilepsy. We reevaluated whether increased uptake of α-[(11) C]methyl-l-tryptophan (AMT) in cerebral tubers is associated with tuber epileptogenicity. METHODS: We included 12 patients (six male, 4-53 years old) with TSC and refractory seizures who were evaluated for epilepsy surgery in our center, including video-electroencephalographic (EEG) monitoring, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI), and positron emission tomography (PET) with α-[(11) C]methyl-l-tryptophan (AMT-PET). Nine of these 12 patients also underwent intracerebral EEG recording. AMT uptake in each tuber was visually evaluated on PET coregistered with MRI. An AMT uptake index based on lesional/healthy cortex ratio was also calculated. Sensitivity and specificity values of AMT-PET in the detection of epileptogenic lesions were obtained, using the available electroclinical and neuroimaging evidence as the gold standard for epileptogenicity. RESULTS: A total of 126 tubers were identified. Two of 12 patients demonstrated a tuber with clearly increased AMT uptake, one of whom also showed a subtle increased AMT uptake in another contralateral tuber. Four other patients showed only subtle increased AMT uptake. The only two tubers with clearly increased AMT uptake proved to be epileptogenic based on intracerebral EEG data, whereas none of the tubers associated with subtle increased AMT uptake were involved at ictal onset. In a per-patient approach, this yielded a sensitivity of clearly increased AMT uptake in detecting tuber epileptogenicity of 17% (2/12 patients), whereas the per-lesion sensitivity and specificity were 12% (95% confidence interval [CI]: 3-34%) and 100% (95% CI: 97-100%), respectively. SIGNIFICANCE: AMT-PET is a specific neuroimaging technique in the identification of epileptogenic tubers in TSC. Despite its low sensitivity, the clinical usefulness of AMT-PET still deserves to be considered according to the challenging complexity of epilepsy surgery in tuberous sclerosis.
Asunto(s)
Epilepsia/etiología , Esclerosis Tuberosa/complicaciones , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Niño , Preescolar , Electroencefalografía , Epilepsia/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Tomografía de Emisión de Positrones/métodos , Triptófano/análogos & derivados , Esclerosis Tuberosa/diagnóstico por imagen , Adulto JovenRESUMEN
Serotonin (5-HT) neurotransmission plays a key modulatory role in the brain. This system is critical for pathophysiological processes and many drug treatments for brain disorders interact with its 14 subtypes of receptors. Positron emission tomography (PET) is a unique tool for the study of the living brain in translational studies from animal models to patients in neurology or psychiatry. This short review is intended to cover the current status of PET radioligands used for imaging human brain 5-HT receptors. Here, we describe the available PET radioligands for the 5-HT1A , 5-HT1B , 5-HT2A , 5-HT4 and 5-HT6 receptors. Finally, we highlight the future challenges for a functional PET imaging of serotonin receptors, including the research towards specific PET radiotracers for yet unexplored serotonin receptors, the need of radiotracers for endogenous serotonin level measurement and the contribution of agonist radiotracers for functional imaging of 5-HT neurotransmission.
Asunto(s)
Radiofármacos/farmacocinética , Receptores de Serotonina/metabolismo , Antagonistas de la Serotonina/farmacocinética , Agonistas de Receptores de Serotonina/farmacocinética , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Humanos , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Radiofármacos/farmacología , Antagonistas de la Serotonina/síntesis química , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/síntesis química , Agonistas de Receptores de Serotonina/farmacologíaRESUMEN
Whether prone positioning (PP) modulates acute lung inflammation by the modulation of biomechanical forces of ventilator-induced lung injuries (VILIs) remains unclear. We aimed to demonstrate that PP decreases acute lung inflammation in animals with experimental acute respiratory distress syndrome (ARDS). Animals were under general anesthesia and protective ventilation (tidal volume 6 mL·kg-1, PEEP 5 cmH2O). ARDS was induced by intratracheal instillation of chlorohydric acid. Animals were then randomized to PP, or to supine position (SP). After 4 h, a positron emission tomography (PET) acquisition with [11C](R)-PK11195 was performed coupled with computerized tomography (CT) acquisitions, allowing the CT quantification of VILI-associated parameters. [11C](R)-PK11195 lung uptake was quantified using pharmacokinetic multicompartment models. Analyses were performed on eight lung sections distributed along the antero-posterior dimension. Six animals were randomized to PP, five to SP (median [Formula: see text]/[Formula: see text] [interquartile range]: 164 [102-269] mmHg). The normally aerated compartment was significantly redistributed to the posterior lung regions of animals in PP, compared with SP. Dynamic strain was significantly increased in posterior regions of SP animals, compared with PP. After 4 h, animals in PP had a significantly lower uptake of [11C](R)-PK11195, compared with SP. [11C](R)-PK11195 regional uptake was independently associated with the study group, dynamic strain, tidal hyperinflation, and regional respiratory system compliance in multivariate analysis. In an experimental model of ARDS, 4 h of PP significantly decreased acute lung inflammation assessed with PET. The beneficial impact of PP on acute lung inflammation was consecutive to the combination of decreased biomechanical forces and changes in the respiratory system mechanics.NEW & NOTEWORTHY Prone position decreases acute lung macrophage inflammation quantified in vivo with [11C](R)-PK11195 positron emission tomography in an experimental acute respiratory distress syndrome. Regional macrophage inflammation is maximal in the most anterior and posterior lung section of supine animals, in relation with increased regional tidal strain and hyperinflation, and reduced regional lung compliance.
Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Animales , Inflamación , Pulmón/diagnóstico por imagen , Neumonía/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Posición Prona , Síndrome de Dificultad Respiratoria/diagnóstico por imagenRESUMEN
The neurofunctional basis of the noradrenergic (NA) system and its associated disorders is still very incomplete because in vivo imaging tools in humans have been missing up to now. Here, for the first time, we use [11C]yohimbine in a large sample of subjects (46 healthy volunteers, 23 females, 23 males; aged 20-50) to perform direct quantification of regional alpha 2 adrenergic receptors' (α2-ARs) availability in the living human brain. The global map shows the highest [11C]yohimbine binding in the hippocampus, the occipital lobe, the cingulate gyrus, and the frontal lobe. Moderate binding was found in the parietal lobe, thalamus, parahippocampus, insula, and temporal lobe. Low levels of binding were found in the basal ganglia, the amygdala, the cerebellum, and the raphe nucleus. Parcellation of the brain into anatomical subregions revealed important variations in [11C]yohimbine binding within most structures. Strong heterogeneity was found in the occipital lobe, the frontal lobe, and the basal ganglia, with substantial gender effects. Mapping the distribution of α2-ARs in the living human brain may prove useful not only for understanding the role of the NA system in many brain functions, but also for understanding neurodegenerative diseases in which altered NA transmission with specific loss of α2-ARs is suspected.
Asunto(s)
Encéfalo , Receptores Adrenérgicos alfa 2 , Masculino , Femenino , Humanos , Yohimbina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Norepinefrina/metabolismo , Tomografía de Emisión de Positrones/métodosRESUMEN
Reperfusion therapies in acute ischemic stroke have demonstrated their efficacy in promoting clinical recovery. However, ischemia/reperfusion injury and related inflammation remain a major challenge in patient clinical management. We evaluated the spatio-temporal evolution of inflammation using sequential clinical [11C]PK11195 PET-MRI in a non-human primate (NHP) stroke model mimicking endovascular thrombectomy (EVT) with a neuroprotective cyclosporine A (CsA) treatment. The NHP underwent a 110-min transient endovascular middle cerebral artery occlusion. We acquired [11C]PK11195 dynamic PET-MR imaging at baseline, 7 and 30 days after intervention. Individual voxel-wise analysis was performed thanks to a baseline scan database. We quantified [11C]PK11195 in anatomical regions and in lesioned areas defined on per-occlusion MR diffusion-weighted imaging and perfusion [15O2]H2OPET imaging. [11C]PK11195 parametric maps showed a clear uptake overlapping the lesion core at D7, which further increased at D30. Voxel-wise analysis identified individuals with significant inflammation at D30, with voxels located within the most severe diffusion reduction area during occlusion, mainly in the putamen. The quantitative analysis revealed that thalamic inflammation lasted until D30 and was significantly reduced in the CsA-treated group compared to the placebo. In conclusion, we showed that chronic inflammation matched ADC decrease at occlusion time, a region exposed to an initial burst of damage-associated molecular patterns, in an NHP stroke model mimicking EVT. We described secondary thalamic inflammation and the protective effect of CsA in this region. We propose that major ADC drop in the putamen during occlusion may identify individuals who could benefit from early personalized treatment targeting inflammation.
Asunto(s)
Isquemia Encefálica , Encefalitis , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/cirugía , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/tratamiento farmacológico , Trombectomía/métodos , Primates , Inflamación/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/tratamiento farmacológico , Resultado del TratamientoRESUMEN
Depression is frequent in Parkinson's disease, but its pathophysiology remains unclear. Two recent studies have investigated the role of serotonergic system at the presynaptic level. The objective of the present study was to use positron emission tomography and [(18)F]MPPF to investigate the role of postsynaptic serotonergic system dysfunction in the pathophysiology of depression in Parkinson's disease. Four parkinsonian patients with depression and 8 parkinsonian patients without depression were enrolled. Each patient underwent a scan using [(18)F]MPPF, a selective serotonin 1A receptor antagonist. Voxel-by-voxel statistical comparison of [(18)F]MPPF uptake of the 2 groups of parkinsonian patients and with 7 matched normal subjects was made using statistical parametric mapping (P uncorrected < .001). Compared with nondepressed parkinsonian patients, depressed patients exhibited reduced tracer uptake in the left hippocampus, the right insula, the left superior temporal cortex, and the orbitofrontal cortex. Compared with controls, nondepressed parkinsonian patients presented reduced [(18)F]MPPF uptake bilaterally in the inferior frontal cortex as well as in the right ventral striatum and insula. Compared with controls, [(18)F]MPPF uptake was decreased in depressed parkinsonian patients in the left dorsal anterior cingulate and orbitofrontal cortices, in the right hippocampic region, and in the temporal cortex. The present imaging study suggests that abnormalities in serotonin 1A receptor neurotransmission in the limbic system may be involved in the neural mechanisms underlying depression in patients with Parkinson's disease.