Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 72(5): 939-950, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36241390

RESUMEN

OBJECTIVES: Clinical studies revealed that early-life adverse events contribute to the development of IBS in adulthood. The aim of our study was to investigate the relationship between prenatal stress (PS), gut microbiota and visceral hypersensitivity with a focus on bacterial lipopeptides containing γ-aminobutyric acid (GABA). DESIGN: We developed a model of PS in mice and evaluated, in adult offspring, visceral hypersensitivity to colorectal distension (CRD), colon inflammation, barrier function and gut microbiota taxonomy. We quantified the production of lipopeptides containing GABA by mass spectrometry in a specific strain of bacteria decreased in PS, in PS mouse colons, and in faeces of patients with IBS and healthy volunteers (HVs). Finally, we assessed their effect on PS-induced visceral hypersensitivity. RESULTS: Prenatally stressed mice of both sexes presented visceral hypersensitivity, no overt colon inflammation or barrier dysfunction but a gut microbiota dysbiosis. The dysbiosis was distinguished by a decreased abundance of Ligilactobacillus murinus, in both sexes, inversely correlated with visceral hypersensitivity to CRD in mice. An isolate from this bacterial species produced several lipopeptides containing GABA including C14AsnGABA. Interestingly, intracolonic treatment with C14AsnGABA decreased the visceral sensitivity of PS mice to CRD. The concentration of C16LeuGABA, a lipopeptide which inhibited sensory neurons activation, was decreased in faeces of patients with IBS compared with HVs. CONCLUSION: PS impacts the gut microbiota composition and metabolic function in adulthood. The reduced capacity of the gut microbiota to produce GABA lipopeptides could be one of the mechanisms linking PS and visceral hypersensitivity in adulthood.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Masculino , Femenino , Ratones , Animales , Síndrome del Colon Irritable/microbiología , Disbiosis , Heces/microbiología , Inflamación
2.
J Lipid Res ; 64(10): 100437, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648213

RESUMEN

The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.

3.
PLoS Pathog ; 17(2): e1009310, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33630958

RESUMEN

Urinary tract infections (UTIs) are among the most common outpatient infections, with a lifetime incidence of around 60% in women. We analysed urine samples from 223 patients with community-acquired UTIs and report the presence of the cleavage product released during the synthesis of colibactin, a bacterial genotoxin, in 55 of the samples examined. Uropathogenic Escherichia coli strains isolated from these patients, as well as the archetypal E. coli strain UTI89, were found to produce colibactin. In a murine model of UTI, the machinery producing colibactin was expressed during the early hours of the infection, when intracellular bacterial communities form. We observed extensive DNA damage both in umbrella and bladder progenitor cells. To the best of our knowledge this is the first report of colibactin production in UTIs in humans and its genotoxicity in bladder cells.


Asunto(s)
Daño del ADN , Infecciones por Escherichia coli/patología , Péptidos/metabolismo , Policétidos/metabolismo , Vejiga Urinaria/patología , Infecciones Urinarias/patología , Escherichia coli Uropatógena/aislamiento & purificación , Anciano , Animales , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Mutágenos/metabolismo , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología
4.
Gut ; 70(6): 1088-1097, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32978245

RESUMEN

OBJECTIVE: Data from clinical research suggest that certain probiotic bacterial strains have the potential to modulate colonic inflammation. Nonetheless, these data differ between studies due to the probiotic bacterial strains used and the poor knowledge of their mechanisms of action. DESIGN: By mass-spectrometry, we identified and quantified free long chain fatty acids (LCFAs) in probiotics and assessed the effect of one of them in mouse colitis. RESULTS: Among all the LCFAs quantified by mass spectrometry in Escherichia coli Nissle 1917 (EcN), a probiotic used for the treatment of multiple intestinal disorders, the concentration of 3-hydroxyoctadecaenoic acid (C18-3OH) was increased in EcN compared with other E. coli strains tested. Oral administration of C18-3OH decreased colitis induced by dextran sulfate sodium in mice. To determine whether other bacteria composing the microbiota are able to produce C18-3OH, we targeted the gut microbiota of mice with prebiotic fructooligosaccharides (FOS). The anti-inflammatory properties of FOS were associated with an increase in colonic C18-3OH concentration. Microbiota analyses revealed that the concentration of C18-3OH was correlated with an increase in the abundance in Allobaculum, Holdemanella and Parabacteroides. In culture, Holdemanella biformis produced high concentration of C18-3OH. Finally, using TR-FRET binding assay and gene expression analysis, we demonstrated that the C18-3OH is an agonist of peroxisome proliferator activated receptor gamma. CONCLUSION: The production of C18-3OH by bacteria could be one of the mechanisms implicated in the anti-inflammatory properties of probiotics. The production of LCFA-3OH by bacteria could be implicated in the microbiota/host interactions.


Asunto(s)
Colitis/tratamiento farmacológico , Mucosa Intestinal/metabolismo , PPAR gamma/metabolismo , Estearatos/metabolismo , Estearatos/uso terapéutico , Animales , Bacteroidetes , Células CACO-2 , Permeabilidad de la Membrana Celular , Quimiocina CXCL1/genética , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran , Células Epiteliales/fisiología , Escherichia coli/metabolismo , Firmicutes/metabolismo , Microbioma Gastrointestinal/fisiología , Expresión Génica/efectos de los fármacos , Humanos , Interleucina-1beta/genética , Espectrometría de Masas , Ratones , Oligosacáridos/farmacología , PPAR gamma/genética , Proteínas Asociadas a Pancreatitis/genética , Permeabilidad , Ganglios Linfáticos Agregados , Prebióticos , Probióticos/química , Estearatos/análisis , Proteína de la Zonula Occludens-1/genética
5.
Metabolomics ; 16(4): 44, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32215752

RESUMEN

INTRODUCTION: To interpret metabolomic and lipidomic profiles, it is necessary to identify the metabolic reactions that connect the measured molecules. This can be achieved by putting them in the context of genome-scale metabolic network reconstructions. However, mapping experimentally measured molecules onto metabolic networks is challenging due to differences in identifiers and level of annotation between data and metabolic networks, especially for lipids. OBJECTIVES: To help linking lipids from lipidomics datasets with lipids in metabolic networks, we developed a new matching method based on the ChEBI ontology. The implementation is freely available as a python library and in MetExplore webserver. METHODS: Our matching method is more flexible than an exact identifier-based correspondence since it allows establishing a link between molecules even if a different level of precision is provided in the dataset and in the metabolic network. For instance, it can associate a generic class of lipids present in the network with the molecular species detailed in the lipidomics dataset. This mapping is based on the computation of a distance between molecules in ChEBI ontology. RESULTS: We applied our method to a chemical library (968 lipids) and an experimental dataset (32 modulated lipids) and showed that using ontology-based mapping improves and facilitates the link with genome scale metabolic networks. Beyond network mapping, the results provide ways for improvements in terms of network curation and lipidomics data annotation. CONCLUSION: This new method being generic, it can be applied to any metabolomics data and therefore improve our comprehension of metabolic modulations.


Asunto(s)
Ontología de Genes , Lípidos/genética , Redes y Vías Metabólicas/genética , Metabolómica , Lipidómica , Lípidos/química
6.
Inorg Chem ; 59(7): 4527-4535, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32181663

RESUMEN

The in-gel detection of proteins for various proteomic experiments is commonly done with the fluorescent RuII tris(bathophenanthroline disulfonate) complex (Ru(BPS)3), which is more cost-effective compared to commercial Ru-based formulations but requires tedious procedures for its preparation and strongly acidic staining conditions. Herein, we report the synthesis and characterization of heteroleptic RuII complexes Ru(BPS)2(BP) and Ru(BPS)(BP)2 containing bathophenanthroline (BP) and bathophenanthroline disulfonate disodium salt (BPS) in comparison with Ru(BPS)3. It was shown by fluorescent and UV-vis measurements that novel RuII complexes were excitable in both UV and visible light, close to emission bands of classical lasers, which is important for successful in-gel protein detection. Novel fluorescent dyes demonstrated improved protein detection in comparison with commercially available SYPRO Ruby staining solution. In addition, unlike commonly used staining protocols, staining with Ru(BPS)(BP)2 can be performed at nearly neutral pH, thereby reducing artificial post-translational modifications (PTMs).


Asunto(s)
Complejos de Coordinación/química , Colorantes Fluorescentes/química , Fenantrolinas/química , Coloración y Etiquetado/métodos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Electroforesis en Gel de Poliacrilamida/métodos , Colorantes Fluorescentes/síntesis química , Humanos , Fenantrolinas/síntesis química , Proteínas/análisis , Proteínas/química , Rutenio/química
7.
Gut ; 68(3): 522-532, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30301768

RESUMEN

OBJECTIVE: Sustained inflammation originating from macrophages is a driving force of fibrosis progression and resolution. Monoacylglycerol lipase (MAGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. It is a proinflammatory enzyme that metabolises 2-arachidonoylglycerol, an endocannabinoid receptor ligand, into arachidonic acid. Here, we investigated the impact of MAGL on inflammation and fibrosis during chronic liver injury. DESIGN: C57BL/6J mice and mice with global invalidation of MAGL (MAGL -/- ), or myeloid-specific deletion of either MAGL (MAGLMye-/-), ATG5 (ATGMye-/-) or CB2 (CB2Mye-/-), were used. Fibrosis was induced by repeated carbon tetrachloride (CCl4) injections or bile duct ligation (BDL). Studies were performed on peritoneal or bone marrow-derived macrophages and Kupffer cells. RESULTS: MAGL -/- or MAGLMye-/- mice exposed to CCl4 or subjected to BDL were more resistant to inflammation and fibrosis than wild-type counterparts. Therapeutic intervention with MJN110, an MAGL inhibitor, reduced hepatic macrophage number and inflammatory gene expression and slowed down fibrosis progression. MAGL inhibitors also accelerated fibrosis regression and increased Ly-6Clow macrophage number. Antifibrogenic effects exclusively relied on MAGL inhibition in macrophages, since MJN110 treatment of MAGLMye-/- BDL mice did not further decrease liver fibrosis. Cultured macrophages exposed to MJN110 or from MAGLMye-/- mice displayed reduced cytokine secretion. These effects were independent of the cannabinoid receptor 2, as they were preserved in CB2Mye-/- mice. They relied on macrophage autophagy, since anti-inflammatory and antifibrogenic effects of MJN110 were lost in ATG5Mye-/- BDL mice, and were associated with increased autophagic flux and autophagosome biosynthesis in macrophages when MAGL was pharmacologically or genetically inhibited. CONCLUSION: MAGL is an immunometabolic target in the liver. MAGL inhibitors may show promising antifibrogenic effects during chronic liver injury.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cirrosis Hepática Experimental/tratamiento farmacológico , Hígado/enzimología , Monoacilglicerol Lipasas/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Autofagia/efectos de los fármacos , Carbamatos/farmacología , Carbamatos/uso terapéutico , Tetracloruro de Carbono , Recuento de Células , Células Cultivadas , Citocinas/metabolismo , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Hidrolasas/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/enzimología , Cirrosis Hepática Experimental/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Terapia Molecular Dirigida/métodos , Monoacilglicerol Lipasas/fisiología , Receptor Cannabinoide CB2/metabolismo , Succinimidas/farmacología , Succinimidas/uso terapéutico
8.
J Lipid Res ; 60(3): 636-647, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626624

RESUMEN

Inside the human host, Leishmania infection starts with phagocytosis of infective promastigotes by macrophages. In order to survive, Leishmania has developed several strategies to manipulate macrophage functions. Among these strategies, Leishmania as a source of bioactive lipids has been poorly explored. Herein, we assessed the biosynthesis of polyunsaturated fatty acid metabolites by infective and noninfective stages of Leishmania and further explored the role of these metabolites in macrophage polarization. The concentration of docosahexaenoic acid metabolites, precursors of proresolving lipid mediators, was increased in the infective stage of the parasite compared with the noninfective stage, and cytochrome P450-like proteins were shown to be implicated in the biosynthesis of these metabolites. The treatment of macrophages with lipids extracted from the infective forms of the parasite led to M2 macrophage polarization and blocked the differentiation into the M1 phenotype induced by IFN-γ. In conclusion, Leishmania polyunsaturated fatty acid metabolites, produced by cytochrome P450-like protein activity, are implicated in parasite/host interactions by promoting the polarization of macrophages into a proresolving M2 phenotype.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Interacciones Huésped-Parásitos , Leishmania/fisiología , Animales , Células CHO , Cricetulus , Leishmania/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
9.
Am J Pathol ; 187(4): 864-883, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28342444

RESUMEN

Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.


Asunto(s)
Sistema Nervioso Central/anomalías , Lipogranulomatosis de Farber/complicaciones , Lipogranulomatosis de Farber/patología , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/patología , Ceramidasa Ácida/metabolismo , Animales , Conducta Animal , Sistema Nervioso Central/patología , Cerebelo/patología , Cerebelo/ultraestructura , Cerebro/patología , Cerebro/ultraestructura , Homocigoto , Hidrocefalia/patología , Ratones , Ratones Transgénicos , Actividad Motora , Neuronas/patología , Neuronas/ultraestructura , Fenotipo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esfingolípidos/metabolismo , Factores de Tiempo
10.
Biochim Biophys Acta Gen Subj ; 1862(10): 2174-2182, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30025856

RESUMEN

Oxylipins are secondary messengers used universally in the living world for communication and defense. The paradigm is that they are produced enzymatically for the eicosanoids and non-enzymatically for the isoprostanoids. They are supposed to be degraded into volatile organic compounds (VOCs) and to participate in aroma production. Some such chemicals composed of eight carbons are also envisoned as alternatives to fossil fuels. In fungi, oxylipins have been mostly studied in Aspergilli and shown to be involved in signalling asexual versus sexual development, mycotoxin production and interaction with the host for pathogenic species. Through targeted gene deletions of genes encoding oxylipin-producing enzymes and chemical analysis of oxylipins and volatile organic compounds, we show that in the distantly-related ascomycete Podospora anserina, isoprostanoids are likely produced enzymatically. We show the disappearance in the mutants lacking lipoxygenases and cyclooxygenases of the production of 10-hydroxy-octadecadienoic acid and that of 1-octen-3-ol, a common volatile compound. Importantly, this was correlated with the inability of the mutants to repel nematodes as efficiently as the wild type. Overall, our data show that in this fungus, oxylipins are not involved in signalling development but may rather be used directly or as precursors in the production of odors against potential agressors. SIGNIFICANCE: We analyzse the role in inter-kingdom communication of lipoxygenase (lox) and cyclooxygenase (cox) genes in the model fungus Podospora anserina. Through chemical analysis we define the oxylipins and volatile organic compounds (VOCs)produce by wild type and mutants for cox and lox genes, We show that the COX and LOX genes are required for the production of some eight carbon VOCs. We show that COX and LOX genes are involved in the production of chemicals repelling nematodes. This role is very different from the ones previously evidenced in other fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Repelentes de Insectos/toxicidad , Lipooxigenasas/metabolismo , Nematodos/inmunología , Podospora/enzimología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Compuestos Orgánicos Volátiles/toxicidad , Animales , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Peroxidación de Lípido , Lipooxigenasas/genética , Nematodos/efectos de los fármacos , Oxilipinas/toxicidad , Prostaglandina-Endoperóxido Sintasas/genética , Compuestos Orgánicos Volátiles/análisis
11.
Proc Natl Acad Sci U S A ; 111(52): 18685-90, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512512

RESUMEN

Sepsis is characterized by overlapping phases of excessive inflammation temporally aligned with an immunosuppressed state, defining a complex clinical scenario that explains the lack of successful therapeutic options. Here we tested whether the formyl-peptide receptor 2/3 (Fpr2/3)--ortholog to human FPR2/ALX (receptor for lipoxin A4)--exerted regulatory and organ-protective functions in experimental sepsis. Coecal ligature and puncture was performed to obtain nonlethal polymicrobial sepsis, with animals receiving antibiotics and analgesics. Clinical symptoms, temperature, and heart function were monitored up to 24 h. Peritoneal lavage and plasma samples were analyzed for proinflammatory and proresolving markers of inflammation and organ dysfunction. Compared with wild-type mice, Fpr2/3(-/-) animals exhibited exacerbation of disease severity, including hypothermia and cardiac dysfunction. This scenario was paralleled by higher levels of cytokines [CXCL1 (CXC receptor ligand 1), CCL2 (CC receptor ligand 2), and TNFα] as quantified in cell-free biological fluids. Reduced monocyte recruitment in peritoneal lavages of Fpr2/3(-/-) animals was reflected by a higher granulocyte/monocyte ratio. Monitoring Fpr2/3(-/-) gene promoter activity with a GFP proxy marker revealed an over threefold increase in granulocyte and monocyte signals at 24 h post-coecal ligature and puncture, a response mediated by TNFα. Treatment with a receptor peptido-agonist conferred protection against myocardial dysfunction in wild-type, but not Fpr2/3(-/-), animals. Therefore, coordinated physio-pharmacological analyses indicate nonredundant modulatory functions for Fpr2/3 in experimental sepsis, opening new opportunities to manipulate the host response for therapeutic development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Granulocitos/metabolismo , Monocitos/metabolismo , Receptores de Formil Péptido/metabolismo , Sepsis/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Granulocitos/patología , Humanos , Ratones , Ratones Noqueados , Monocitos/patología , Peritoneo/metabolismo , Peritoneo/patología , Receptores de Formil Péptido/genética , Sepsis/genética , Sepsis/patología , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
12.
Gastroenterology ; 149(2): 433-44.e7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25911511

RESUMEN

BACKGROUND & AIMS: In mice, activation of the transient receptor potential cation channels (TRP) TRPV1, TRPV4, and TRPA1 causes visceral hypersensitivity. These receptors and their agonists might be involved in development of irritable bowel syndrome (IBS). We investigated whether polyunsaturated fatty acid (PUFA) metabolites, which activate TRPs, are present in colon tissues from patients with IBS and act as endogenous agonists to induce hypersensitivity. METHODS: We analyzed colon biopsy samples from 40 patients with IBS (IBS biopsies) and 11 healthy individuals undergoing colorectal cancer screening (controls), collected during colonoscopy at the University of Bologna, Italy. Levels of the PUFA metabolites that activate TRPV1 (12-hydroperoxyeicosatetraenoic acid, 15-hydroxyeicosatetraenoic acid, 5-hydroxyeicosatetraenoic acid, and leukotriene B4), TRPV4 (5,6-epoxyeicosatrienoic acid [EET] and 8,9-EET), and TRPA1 (PGA1, 8-iso-prostaglandin A2, and 15-deoxy-Δ-prostaglandin J2) were measured in biopsies and their supernatants using liquid chromatography and tandem mass spectrometry; we also measured levels of the PUFA metabolites prostaglandin E2 (PGE2) and resolvins. C57Bl6 mice were given intrathecal injections of small interfering RNAs to reduce levels of TRPV4, or control small interfering RNAs, along with colonic injections of biopsy supernatants; visceral hypersensitivity was measured based on response to colorectal distension. Mouse sensory neurons were cultured and incubated with biopsy supernatants and lipids extracted from biopsies or colons of mice. Immunohistochemistry was used to detect TRPV4 in human dorsal root ganglia samples (from the National Disease Research Interchange). RESULTS: Levels of the TRPV4 agonist 5,6-EET, but not levels of TRPV1 or TRPA1 agonists, were increased in IBS biopsies compared with controls; increases correlated with pain and bloating scores. Supernatants from IBS biopsies, but not from controls, induced visceral hypersensitivity in mice. Small interfering RNA knockdown of TRPV4 in mouse primary afferent neurons inhibited the hypersensitivity caused by supernatants from IBS biopsies. Levels of 5,6-EET and 15-HETE were increased in colons of mice with, but not without, visceral hypersensitivity. PUFA metabolites extracted from IBS biopsies or colons of mice with visceral hypersensitivity activated mouse sensory neurons in vitro, by activating TRPV4. Mouse sensory neurons exposed to supernatants from IBS biopsies produced 5,6-EET via a mechanism that involved the proteinase-activated receptor-2 and cytochrome epoxygenase. In human dorsal root ganglia, TPV4 was expressed by 35% of neurons. CONCLUSIONS: Colon tissues from patients with IBS have increased levels of specific PUFA metabolites. These stimulate sensory neurons from mice and generate visceral hypersensitivity via activation of TRPV4.


Asunto(s)
Canales de Calcio/metabolismo , Colon/metabolismo , Ácidos Grasos Insaturados/metabolismo , Síndrome del Colon Irritable/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Adulto , Anciano , Animales , Biopsia , Cromatografía Liquida , Colon/citología , Colon/inervación , Dinoprostona/metabolismo , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Italia , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , ARN Interferente Pequeño/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Canal Catiónico TRPA1 , Espectrometría de Masas en Tándem , Adulto Joven
13.
Amino Acids ; 48(12): 2717-2729, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27565657

RESUMEN

Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA(*D) and LAA(*E)). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA(*D/*E)+H)-C2H5OH]+ product ions dissociate via distinct pathways in sequential MS3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA(*D), whereas LAA(*E) leads to the [*E+H-H2O]+ anhydride. The former releases ammonia to provide acylium, which gives the C n H(2n-1) and C n H(2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.


Asunto(s)
Ácido Aspártico/química , Ácido Glutámico/química , Lípidos/química , Anhídridos , Éteres de Etila/química , Ácido Glutámico/análogos & derivados , Hidrogenación , Iones/química , Espectrometría de Masas en Tándem , Agua/química
14.
Blood ; 122(4): 608-17, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23733341

RESUMEN

Endogenous protective pathways mitigate the overshooting of inflammation after sterile or infectious injury. Here we report that formyl peptide receptor 2 (Fpr2/3) null mice display a major phenotype with exacerbated vascular inflammation observed postischemia reperfusion (IR) injury of the mesenteric artery, characterized by marked neutrophil adhesion and extravasation as visualized by intravital microscopy. Analysis of endogenous agonists for Fpr2/3 revealed that lipoxin A4 (LXA4) was generated by platelet/neutrophil aggregates during ischemia: this cellular response was attenuated in Fpr2/3(-/-) mice; hence, LXA4 levels were lower after 30 minutes' ischemia, and associated with augmented vascular inflammation in the reperfusion (45-180 minutes) phase. Exogenous delivery of LXA4 attenuated IR-mediated inflammation in Fpr2/3(+/+) but not Fpr2/3(-/-) mice; conversely, an Fpr2/3 antagonist skewed the vascular phenotype of Fpr2/3(+/+) mice to that of Fpr2/3(-/-) animals. Such LXA4-based circuit could be activated by aspirin (30-100 mg/kg), which triggered formation of 15-epi-LXA4 in wild-type mice, yet it was effective in Fpr2/3(-/-) mice. In summary, we propose that during ischemia, neutrophil Fpr2/3 controls platelet/neutrophil aggregates with the rapid generation of circulating LXA4, which in turn modulates downstream vascular inflammatory responses evident during the reperfusion phase.


Asunto(s)
Aspirina/farmacología , Vasos Sanguíneos , Citoprotección , Lipoxinas/farmacología , Microcirculación/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Citoprotección/efectos de los fármacos , Citoprotección/genética , Lipoxinas/química , Masculino , Ratones , Ratones Noqueados , Microcirculación/genética , Modelos Biológicos , Profármacos/química , Profármacos/farmacología , Receptores de Formil Péptido/genética , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
Chem Biodivers ; 12(7): 1115-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26172331

RESUMEN

A new sphingolipid hybrid molecule was designed to assemble, within a tail-to-tail double-chain structure, the ceramide hydrophilic moiety and the tetrahydrofuran pharmacophore of jaspine B, a natural product known to interfere with sphingolipid metabolism. This compound was prepared through acylation of sphingosine with a jaspine B derivative bearing a COOH group in the terminal position of the aliphatic backbone. This new hybrid molecule was evaluated for its capacities to affect melanoma cell viability and sphingolipid metabolism. While retaining the cytotoxicity of ceramide itself, this compound was shown to lower the sphingomyelin cellular levels and significantly enhance the production of sphingosine-1-phosphate, thus representing a novel sphingolipid metabolism modulator.


Asunto(s)
Productos Biológicos/farmacología , Ceramidas/farmacología , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ceramidas/química , Ceramidas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Conformación Molecular , Esfingolípidos/química , Esfingosina/química , Esfingosina/metabolismo , Esfingosina/farmacología , Relación Estructura-Actividad
16.
Lipids ; 58(2): 81-92, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36544247

RESUMEN

Leishmania parasites are the causative agents of visceral or cutaneous leishmaniasis in humans and of canine leishmaniosis. The macrophage is the predilected host cell of Leishmania in which the promastigote stage is transformed into amastigote. We previously showed changes in the fatty acid composition (FA) of lipids in two strains of Leishmania donovani upon differentiation of promastigote to amastigote, including increased proportions of arachidonic acid (AA) and to a less extent of docosahexaenoic acid (DHA). Here, we carried out supplementation with AA or DHA on two Leishmania infantum strains, a visceral (MON-1) and a cutaneous (MON-24), to evaluate the role of these FA in parasite/macrophage interactions. The proportions of AA or DHA in total lipids were significantly increased in promastigotes cultured in AA- or DHA-supplemented media compared to controls. The content of FA-derived oxygenated metabolites was enhanced in supplemented strains, generating especially epoxyeicosatrienoic acids (11,12- and 14,15-EET) and hydroxyeicosatetraenoic acids (5- and 8- HETE) from AA, and hydroxydocosahexaenoic acids (14- and 17-HDoHE) from DHA. For both MON-1 and MON-24, AA-supplemented promastigotes showed higher infectivity towards J774 macrophages as evidenced by higher intracellular amastigote numbers. Higher infectivity was observed after DHA supplementation for MON-24 but not MON-1 strain. ROS production by macrophages increased upon parasite infection, but only minor change was observed between control and supplemented parasites. We propose that under high AA or DHA environment that is associated with AA or DHA enrichment of promastigote lipids, FA derivatives can accumulate in the parasite, thereby modulating parasite infectivity towards host macrophages.


Asunto(s)
Leishmania infantum , Leishmaniasis Cutánea , Leishmaniasis Visceral , Parásitos , Humanos , Ratones , Animales , Perros , Leishmania infantum/metabolismo , Macrófagos/parasitología , Leishmaniasis Cutánea/parasitología , Ácido Araquidónico/farmacología , Ácido Araquidónico/metabolismo , Leishmaniasis Visceral/parasitología , Ratones Endogámicos BALB C
17.
iScience ; 26(8): 107422, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37575177

RESUMEN

Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control. All stimuli induced a strong production of oxylipins but most importantly, bacterial, viral, and T cell immune responses show distinct oxylipin signatures. Integration of the oxylipin and cytokine responses for each condition revealed new immune networks improving our understanding of inflammation regulation. Finally, the oxylipin responses and oxylipin-cytokine networks were compared in patients with active tuberculosis or with latent infection. This revealed different responses to BCG but not LPS stimulation highlighting new regulatory pathways for further investigations.

18.
Anal Chim Acta ; 1193: 339316, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35058001

RESUMEN

Improving knowledge about metabolites produced by the microbiota is a key point to understand its role in human health and disease. Among them, lipoamino acid (LpAA) containing asparagine and their derivatives are bacterial metabolites which could have an impact on the host. In this study, our aim was to extend the characterization of this family. We developed a semi-targeted workflow to identify and quantify new candidates. First, the sample preparation and analytical conditions using liquid chromatography (LC) coupled to high resolution mass spectrometry (HRMS) were optimized. Using a theoretical homemade database, HRMS raw data were manually queried. This strategy allowed us to find 25 new LpAA conjugated to Asn, Gln, Asp, Glu, His, Leu, Ile, Lys, Phe, Trp and Val amino acids. These metabolites were then fully characterized by MS2, and compared to the pure synthesized standards to validate annotation. Finally, a quantitative method was developed by LC coupled to a triple quadrupole instrument, and linearity and limit of quantification were determined. 14 new LpAA were quantified in gram positive bacteria, Lactobacilus animalis, and 12 LpAA in Escherichia coli strain Nissle 1917.


Asunto(s)
Escherichia coli , Fragmentos de Péptidos , Secuencia de Aminoácidos , Humanos , Espectrometría de Masas , Tripsina
19.
Metabolites ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064856

RESUMEN

Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated in a large number of heterogeneous diseases, such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Due to the high structural diversity and complexity of lipid species, the presence of isomeric and isobaric lipid species, and their occurrence at a large concentration scale, a complete lipidomic profiling of biological matrices remains challenging, especially in clinical contexts. Using supercritical fluid chromatography coupled with high-resolution mass spectrometry, we have developed and validated an untargeted lipidomic approach to the profiling of plasma and blood. Moreover, we have tested the technique using the Dry Blood Spot (DBS) method and found that it allows for the easy collection of blood for analysis. To develop the method, we performed the optimization of the separation and detection of lipid species on pure standards, reference human plasma (SRM1950), whole blood, and DBS. These analyses allowed an in-house lipid data bank to be built. Using the MS-Dial software, we developed an automatic process for the relative quantification of around 500 lipids species belonging to the 6 main classes of lipids (including phospholipids, sphingolipids, free fatty acids, sterols, and fatty acyl-carnitines). Then, we compared the method using the published data for SRM 1950 and a mouse blood sample, along with another sample of the same blood collected using the DBS method. In this study, we provided a method for blood lipidomic profiling that can be used for the easy sampling of dry blood spots.

20.
Science ; 372(6544): 864-868, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34016782

RESUMEN

Symbiosis with arbuscular mycorrhizal fungi (AMF) improves plant nutrition in most land plants, and its contribution to the colonization of land by plants has been hypothesized. Here, we identify a conserved transcriptomic response to AMF among land plants, including the activation of lipid metabolism. Using gain of function, we show the transfer of lipids from the liverwort Marchantia paleacea to AMF and its direct regulation by the transcription factor WRINKLED (WRI). Arbuscules, the nutrient-exchange structures, were not formed in loss-of-function wri mutants in M. paleacea, leading to aborted mutualism. Our results show the orthology of the symbiotic transfer of lipids across land plants and demonstrate that mutualism with arbuscular mycorrhizal fungi was present in the most recent ancestor of land plants 450 million years ago.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Marchantia/genética , Marchantia/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/metabolismo , Simbiosis , Factores de Transcripción/metabolismo , Transporte Biológico , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Marchantia/microbiología , Mutación , Proteínas de Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA