Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 84(1): 284-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25081822

RESUMEN

Allometric constraints associated with digesting leaves require relatively small avian herbivores to consume high-quality forage. How such constraints are overcome during ontogeny when energy and nutrient requirements are relatively high has not been adequately explored. We compared growth trajectories of Canada and lesser snow goose goslings raised on grass-based diets that differed in protein (10%, 14% or 18%) and fibre (30% or 45%) with those of free-living goslings on Akimiski Island, Canada. This common-garden experiment allowed us to test the hypotheses that (i) smaller-bodied geese are more negatively affected by reduced forage quality than larger-bodied geese, and (ii) goslings from subarctic brood-rearing areas have a limited capacity to slow growth in response to reduced forage quality. Canada goose goslings fed low-protein (10%) diets were on average 44% lighter in body mass, had slower growth rates and were delayed >20 days in reaching 90% of asymptotic size compared with Canada goose goslings fed 18% protein. In contrast, snow goose goslings were unable to survive on the low-protein diets, and those fed high- or medium-protein diets grew at a similar rate and achieved similar asymptotic size. Canada and snow goose goslings fed low-protein diets had reduced growth rates of the tarsus and delayed emergence of the 9th primary. Free-ranging Canada goslings on Akimiski Island were similar in mass and structural size to captive-reared goslings fed low-protein diets. In contrast, snow goslings were similar in mass and structural size to the captive-reared goslings fed the high- and medium-protein diets. This suggests that degraded habitats with mostly low-protein forage may be able to support Canada goslings better than snow goslings which require higher-quality forage to survive. Size-related differences in gosling growth and survival in response to diminished diet quality may influence population size when available food reaches a lower threshold in protein content. However, goslings can avoid such density-dependent population regulation if they are able to move their broods and find adequate quality and quantity of forage.


Asunto(s)
Dieta , Gansos/fisiología , Longevidad , Alimentación Animal/análisis , Animales , Ecosistema , Femenino , Gansos/crecimiento & desarrollo , Masculino , Nunavut , Distribución Aleatoria , Especificidad de la Especie , Simpatría
2.
Ambio ; 49(3): 732-748, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31955397

RESUMEN

Tundra-breeding birds face diverse conservation challenges, from accelerated rates of Arctic climate change to threats associated with highly migratory life histories. Here we summarise the status and trends of Arctic terrestrial birds (88 species, 228 subspecies or distinct flyway populations) across guilds/regions, derived from published sources, raw data or, in rare cases, expert opinion. We report long-term trends in vital rates (survival, reproduction) for the handful of species and regions for which these are available. Over half of all circumpolar Arctic wader taxa are declining (51% of 91 taxa with known trends) and almost half of all waterfowl are increasing (49% of 61 taxa); these opposing trends have fostered a shift in community composition in some locations. Declines were least prevalent in the African-Eurasian Flyway (29%), but similarly prevalent in the remaining three global flyways (44-54%). Widespread, and in some cases accelerating, declines underscore the urgent conservation needs faced by many Arctic terrestrial bird species.


Asunto(s)
Aves , Tundra , Animales , Regiones Árticas , Cambio Climático , Reproducción
3.
J Comp Physiol B ; 187(2): 339-351, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27695931

RESUMEN

In nature, birds are faced with variable food sources that may differ in composition (protein vs. carbohydrates) and quality (highly digestible material vs. indigestible fiber). Studies in passerine birds and some commercial poultry demonstrate that the gastrointestinal tract can respond to varying diet composition and quality by changing morphology and/or activities of digestive enzymes. However, studies in additional avian species are warranted to understand generalities of these trends. We first fed juvenile mallards (Anas platyrhynchos), chickens (Gallus gallus), and quails (Coturnix coturnix) on either high-carbohydrate or high-protein diets. For the most part, birds fed the high-carbohydrate diet had higher small intestinal and cecal disaccharidase activities (maltase and sucrase). However, only mallards exhibited higher small intestinal aminopeptidase-N (APN) activities when fed the high-protein diet. These results differ from passerine birds, which largely modulate small intestinal proteases, but not disaccharidases. In another trial, we fed Canada geese (Branta canadensis) diets that varied in both their protein and fiber concentrations for approximately 3.5 months. Birds fed the high-fiber diets had significantly longer small intestines and caeca compared to those fed low-fiber diets. Additionally, geese fed the high-fiber diets exhibited lower mass-specific activities of small intestinal sucrase, and higher activities of APN when summed across the small intestine and ceca. Similar to the avian species above, geese fed the high-protein diets did not exhibit flexibility in their small intestinal APN activities. Overall, these experiments demonstrate that responsiveness of the avian digestive tract to diet composition may have phylogenetic or ecological constraints. Studies on other avian taxa are needed to understand these patterns.


Asunto(s)
Pollos/metabolismo , Dieta/veterinaria , Patos/metabolismo , Tracto Gastrointestinal/enzimología , Gansos/fisiología , Animales , Proteínas Aviares/metabolismo , Antígenos CD13/metabolismo , Coturnix/metabolismo , Fibras de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Digestión/fisiología , Almidón/farmacología , Sacarasa/metabolismo , alfa-Glucosidasas/metabolismo
4.
Ecol Evol ; 4(2): 132-43, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24558569

RESUMEN

Estimates of range-wide abundance, harvest, and harvest rate are fundamental for sound inferences about the role of exploitation in the dynamics of free-ranging wildlife populations, but reliability of existing survey methods for abundance estimation is rarely assessed using alternative approaches. North American mallard populations have been surveyed each spring since 1955 using internationally coordinated aerial surveys, but population size can also be estimated with Lincoln's method using banding and harvest data. We estimated late summer population size of adult and juvenile male and female mallards in western, midcontinent, and eastern North America using Lincoln's method of dividing (i) total estimated harvest, [Formula: see text], by estimated harvest rate, [Formula: see text], calculated as (ii) direct band recovery rate, [Formula: see text], divided by the (iii) band reporting rate, [Formula: see text]. Our goal was to compare estimates based on Lincoln's method with traditional estimates based on aerial surveys. Lincoln estimates of adult males and females alive in the period June-September were 4.0 (range: 2.5-5.9), 1.8 (range: 0.6-3.0), and 1.8 (range: 1.3-2.7) times larger than respective aerial survey estimates for the western, midcontinent, and eastern mallard populations, and the two population estimates were only modestly correlated with each other (western: r = 0.70, 1993-2011; midcontinent: r = 0.54, 1961-2011; eastern: r = 0.50, 1993-2011). Higher Lincoln estimates are predictable given that the geographic scope of inference from Lincoln estimates is the entire population range, whereas sampling frames for aerial surveys are incomplete. Although each estimation method has a number of important potential biases, our review suggests that underestimation of total population size by aerial surveys is the most likely explanation. In addition to providing measures of total abundance, Lincoln's method provides estimates of fecundity and population sex ratio and could be used in integrated population models to provide greater insights about population dynamics and management of North American mallards and most other harvested species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA