Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222573

RESUMEN

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Asunto(s)
Cambio Climático , Ecosistema , Humanos , Productos Agrícolas , Carbono , Sequías
2.
Proc Natl Acad Sci U S A ; 120(46): e2313591120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37948586

RESUMEN

The deleterious effects of ozone (O3) pollution on crop physiology, yield, and productivity are widely acknowledged. It has also been assumed that C4 crops with a carbon concentrating mechanism and greater water use efficiency are less sensitive to O3 pollution than C3 crops. This assumption has not been widely tested. Therefore, we compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, and switchgrass) grown under ambient and elevated O3 concentration ([O3]) in the field at free-air O3 concentration enrichment (O3-FACE) facilities over the past 20 y. When normalized by O3 exposure, C3 and C4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C3 crops compared with C4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O3 exposure. This study quantitatively demonstrates that C4 crops respond less to elevated [O3] than C3 crops. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere.


Asunto(s)
Oryza , Ozono , Fotosíntesis/fisiología , Clorofila , Hojas de la Planta/fisiología , Poaceae , Zea mays/fisiología , Productos Agrícolas/genética , Oryza/genética , Dióxido de Carbono/farmacología
4.
Plant Cell Environ ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321805

RESUMEN

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.

5.
Plant Physiol ; 187(3): 1462-1480, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618057

RESUMEN

Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.


Asunto(s)
Botánica/métodos , Mapeo Cromosómico/instrumentación , Aprendizaje Automático , Fenotipo , Estomas de Plantas/fisiología , Sitios de Carácter Cuantitativo , Zea mays/genética , Botánica/instrumentación , Genes de Plantas
6.
Plant Physiol ; 187(4): 2544-2562, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618072

RESUMEN

Stomata allow CO2 uptake by leaves for photosynthetic assimilation at the cost of water vapor loss to the atmosphere. The opening and closing of stomata in response to fluctuations in light intensity regulate CO2 and water fluxes and are essential for maintaining water-use efficiency (WUE). However, a little is known about the genetic basis for natural variation in stomatal movement, especially in C4 crops. This is partly because the stomatal response to a change in light intensity is difficult to measure at the scale required for association studies. Here, we used high-throughput thermal imaging to bypass the phenotyping bottleneck and assess 10 traits describing stomatal conductance (gs) before, during and after a stepwise decrease in light intensity for a diversity panel of 659 sorghum (Sorghum bicolor) accessions. Results from thermal imaging significantly correlated with photosynthetic gas exchange measurements. gs traits varied substantially across the population and were moderately heritable (h2 up to 0.72). An integrated genome-wide and transcriptome-wide association study identified candidate genes putatively driving variation in stomatal conductance traits. Of the 239 unique candidate genes identified with the greatest confidence, 77 were putative orthologs of Arabidopsis (Arabidopsis thaliana) genes related to functions implicated in WUE, including stomatal opening/closing (24 genes), stomatal/epidermal cell development (35 genes), leaf/vasculature development (12 genes), or chlorophyll metabolism/photosynthesis (8 genes). These findings demonstrate an approach to finding genotype-to-phenotype relationships for a challenging trait as well as candidate genes for further investigation of the genetic basis of WUE in a model C4 grass for bioenergy, food, and forage production.


Asunto(s)
Perfilación de la Expresión Génica/instrumentación , Genoma de Planta , Estudio de Asociación del Genoma Completo/instrumentación , Fenotipo , Estomas de Plantas/fisiología , Sorghum/genética
7.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618065

RESUMEN

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Asunto(s)
Perfilación de la Expresión Génica , Técnicas Genéticas/instrumentación , Estudio de Asociación del Genoma Completo , Aprendizaje Automático , Sorghum/genética , Agua/metabolismo , Rasgos de la Historia de Vida , Fenotipo , Sorghum/metabolismo
8.
Plant Cell Environ ; 45(8): 2324-2336, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35590441

RESUMEN

Stomata regulate leaf CO2 assimilation (A) and water loss. The Ball-Berry and Medlyn models predict stomatal conductance (gs ) with a slope parameter (m or g1 ) that reflects the sensitivity of gs to A, atmospheric CO2  and humidity, and is inversely related to water use efficiency (WUE). This study addressed knowledge gaps about what the values of m and g1 are in C4 crops under field conditions, as well as how they vary among genotypes and with drought stress. Four inbred maize genotypes were unexpectedly consistent in how m and g1 decreased as water supply decreased. This was despite genotypic variation in stomatal patterning, A and gs . m and g1 were strongly correlated with soil water content, moderately correlated with predawn leaf water potential (Ψpd ), but not correlated with midday leaf water potential (Ψmd ). This implied that m and g1 respond to long-term water supply more than short-term drought stress. The conserved nature of m and g1 across anatomically diverse genotypes and water supplies suggests there is flexibility in structure-function relationships underpinning WUE. This evidence can guide the simulation of maize gs across a range of water supply in the primary maize growing region and inform efforts to improve WUE.


Asunto(s)
Fotosíntesis , Zea mays , Dióxido de Carbono , Sequías , Fotosíntesis/fisiología , Hojas de la Planta/genética , Estomas de Plantas/fisiología , Abastecimiento de Agua , Zea mays/genética
9.
Plant Cell Environ ; 45(12): 3462-3475, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36098093

RESUMEN

The leaf economics spectrum (LES) describes multivariate correlations in leaf structural, physiological and chemical traits, originally based on diverse C3 species grown under natural ecosystems. However, the specific contribution of C4 species to the global LES is studied less widely. C4 species have a CO2 concentrating mechanism which drives high rates of photosynthesis and improves resource use efficiency, thus potentially pushing them towards the edge of the LES. Here, we measured foliage morphology, structure, photosynthesis, and nutrient content for hundreds of genotypes of the C4 grass Miscanthus× giganteus grown in two common gardens over two seasons. We show substantial trait variations across M.× giganteus genotypes and robust genotypic trait relationships. Compared to the global LES, M.× giganteus genotypes had higher photosynthetic rates, lower stomatal conductance, and less nitrogen content, indicating greater water and photosynthetic nitrogen use efficiency in the C4 species. Additionally, tetraploid genotypes produced thicker leaves with greater leaf mass per area and lower leaf density than triploid genotypes. By expanding the LES relationships across C3 species to include C4 crops, these findings highlight that M.× giganteus occupies the boundary of the global LES and suggest the potential for ploidy to alter LES traits.


Asunto(s)
Ecosistema , Poaceae , Poaceae/genética , Tetraploidía , Triploidía , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Nitrógeno
10.
Glob Chang Biol ; 28(11): 3537-3556, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35090072

RESUMEN

Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2  fluxes.


Asunto(s)
Estomas de Plantas , Transpiración de Plantas , Dióxido de Carbono , Ecosistema , Fotosíntesis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua/fisiología
11.
Glob Chang Biol ; 28(4): 1659-1677, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767298

RESUMEN

Enhancing soil carbon (C) storage has the potential to offset human-caused increases in atmospheric CO2 . Rising CO2 has occurred concurrently with increasing supply rates of biologically limiting nutrients such as nitrogen (N) and phosphorus (P). However, it is unclear how increased supplies of N and P will alter soil C sequestration, particularly in grasslands, which make up nearly a third of non-agricultural land worldwide. Here, we leverage a globally distributed nutrient addition experiment (the Nutrient Network) to examine how a decade of N and P fertilization (alone and in combination) influenced soil C and N stocks at nine grassland sites spanning the continental United States. We measured changes in bulk soil C and N stocks and in three soil C fractions (light and heavy particulate organic matter, and mineral-associated organic matter fractions). Nutrient amendment had variable effects on soil C and N pools that ranged from strongly positive to strongly negative, while soil C and N pool sizes varied by more than an order of magnitude across sites. Piecewise SEM clarified that small increases in plant C inputs with fertilization did not translate to greater soil C storage. Nevertheless, peak season aboveground plant biomass (but not root biomass or production) was strongly positively related to soil C storage at seven of the nine sites, and across all nine sites, soil C covaried with moisture index and soil mineralogy, regardless of fertilization. Overall, we show that site factors such as moisture index, plant productivity, soil texture, and mineralogy were key predictors of cross-site soil C, while nutrient amendment had weaker and site-specific effects on C sequestration. This suggests that prioritizing the protection of highly productive temperate grasslands is critical for reducing future greenhouse gas losses arising from land use change.


Asunto(s)
Carbono , Suelo , Ecosistema , Fertilización , Pradera , Humanos , Nitrógeno/análisis
12.
J Exp Bot ; 72(13): 4965-4980, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33914063

RESUMEN

Previous studies have found that maximum quantum yield of CO2 assimilation (Φ CO2,max,app) declines in lower canopies of maize and miscanthus, a maladaptive response to self-shading. These observations were limited to single genotypes, leaving it unclear whether the maladaptive shade response is a general property of this C4 grass tribe, the Andropogoneae. We explored the generality of this maladaptation by testing the hypothesis that erect leaf forms (erectophiles), which allow more light into the lower canopy, suffer less of a decline in photosynthetic efficiency than drooping leaf (planophile) forms. On average, Φ CO2,max,app declined 27% in lower canopy leaves across 35 accessions, but the decline was over twice as great in planophiles than in erectophiles. The loss of photosynthetic efficiency involved a decoupling between electron transport and assimilation. This was not associated with increased bundle sheath leakage, based on 13C measurements. In both planophiles and erectophiles, shaded leaves had greater leaf absorptivity and lower activities of key C4 enzymes than sun leaves. The erectophile form is considered more productive because it allows a more effective distribution of light through the canopy to support photosynthesis. We show that in sorghum, it provides a second benefit, maintenance of higher Φ CO2,max,app to support efficient use of that light resource.


Asunto(s)
Sorghum , Transporte de Electrón , Fotosíntesis , Hojas de la Planta , Zea mays
13.
J Exp Bot ; 72(13): 5024-5037, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33893796

RESUMEN

Mechanistic modeling indicates that stomatal conductance could be reduced to improve water use efficiency (WUE) in C4 crops. Genetic variation in stomatal density and canopy temperature was evaluated in the model C4 genus, Setaria. Recombinant inbred lines (RILs) derived from a Setaria italica×Setaria viridis cross were grown with ample or limiting water supply under field conditions in Illinois. An optical profilometer was used to rapidly assess stomatal patterning, and canopy temperature was measured using infrared imaging. Stomatal density and canopy temperature were positively correlated but both were negatively correlated with total above-ground biomass. These trait relationships suggest a likely interaction between stomatal density and the other drivers of water use such as stomatal size and aperture. Multiple quantitative trait loci (QTL) were identified for stomatal density and canopy temperature, including co-located QTL on chromosomes 5 and 9. The direction of the additive effect of these QTL on chromosome 5 and 9 was in accordance with the positive phenotypic relationship between these two traits. This, along with prior experiments, suggests a common genetic architecture between stomatal patterning and WUE in controlled environments with canopy transpiration and productivity in the field, while highlighting the potential of Setaria as a model to understand the physiology and genetics of WUE in C4 species.


Asunto(s)
Sitios de Carácter Cuantitativo , Setaria (Planta) , Sequías , Fenotipo , Setaria (Planta)/genética , Temperatura , Agua
14.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24805231

RESUMEN

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Asunto(s)
Dióxido de Carbono/farmacología , Productos Agrícolas/química , Productos Agrícolas/efectos de los fármacos , Estado Nutricional , Valor Nutritivo/efectos de los fármacos , Salud Pública/tendencias , Aire/análisis , Atmósfera/química , Australia , Cruzamiento , Dióxido de Carbono/análisis , Productos Agrícolas/metabolismo , Dieta , Grano Comestible/química , Grano Comestible/efectos de los fármacos , Grano Comestible/metabolismo , Fabaceae/química , Fabaceae/efectos de los fármacos , Fabaceae/metabolismo , Salud Global/tendencias , Humanos , Hierro/análisis , Hierro/metabolismo , Deficiencias de Hierro , Japón , Fotosíntesis/efectos de los fármacos , Ácido Fítico/análisis , Ácido Fítico/metabolismo , Estados Unidos , Zinc/análisis , Zinc/deficiencia , Zinc/metabolismo
15.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24670649

RESUMEN

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Asunto(s)
Biodiversidad , Eutrofización/efectos de la radiación , Herbivoria/fisiología , Luz , Plantas/metabolismo , Plantas/efectos de la radiación , Poaceae , Clima , Eutrofización/efectos de los fármacos , Geografía , Actividades Humanas , Internacionalidad , Nitrógeno/metabolismo , Nitrógeno/farmacología , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/fisiología , Poaceae/efectos de la radiación , Factores de Tiempo
16.
PLoS Genet ; 13(6): e1006841, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28644860

RESUMEN

Vertical growth of plants is a dynamic process that is influenced by genetic and environmental factors and has a pronounced effect on overall plant architecture and biomass composition. We have performed six controlled growth trials of an interspecific Setaria italica x Setaria viridis recombinant inbred line population to assess how the genetic architecture of plant height is influenced by developmental queues, water availability and planting density. The non-destructive nature of plant height measurements has enabled us to monitor height throughout the plant life cycle in both field and controlled environments. We find that plant height is reduced under water limitation and high density planting and affected by growth environment (field vs. growth chamber). The results support a model where plant height is a heritable, polygenic trait and that the major genetic loci that influence plant height function independent of growth environment. The identity and contribution of loci that influence height changes dynamically throughout development and the reduction of growth observed in water limited environments is a consequence of delayed progression through the genetic program which establishes plant height in Setaria. In this population, alleles inherited from the weedy S. viridis parent act to increase plant height early, whereas a larger number of small effect alleles inherited from the domesticated S. italica parent collectively act to increase plant height later in development.


Asunto(s)
Ambiente Controlado , Sitios de Carácter Cuantitativo/genética , Setaria (Planta)/genética , Alelos , Biomasa , Mapeo Cromosómico , Genoma de Planta , Genotipo , Herencia Multifactorial/genética , Fenotipo , Setaria (Planta)/crecimiento & desarrollo
17.
Glob Chang Biol ; 25(12): 4327-4338, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31571358

RESUMEN

Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.


Asunto(s)
Ozono , Fotosíntesis , Contaminación Ambiental , Variación Genética , Hojas de la Planta , Zea mays
18.
Plant Physiol ; 173(1): 614-626, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049858

RESUMEN

High-throughput, noninvasive field phenotyping has revealed genetic variation in crop morphological, developmental, and agronomic traits, but rapid measurements of the underlying physiological and biochemical traits are needed to fully understand genetic variation in plant-environment interactions. This study tested the application of leaf hyperspectral reflectance (λ = 500-2,400 nm) as a high-throughput phenotyping approach for rapid and accurate assessment of leaf photosynthetic and biochemical traits in maize (Zea mays). Leaf traits were measured with standard wet-laboratory and gas-exchange approaches alongside measurements of leaf reflectance. Partial least-squares regression was used to develop a measure of leaf chlorophyll content, nitrogen content, sucrose content, specific leaf area, maximum rate of phosphoenolpyruvate carboxylation, [CO2]-saturated rate of photosynthesis, and leaf oxygen radical absorbance capacity from leaf reflectance spectra. Partial least-squares regression models accurately predicted five out of seven traits and were more accurate than previously used simple spectral indices for leaf chlorophyll, nitrogen content, and specific leaf area. Correlations among leaf traits and statistical inferences about differences among genotypes and treatments were similar for measured and modeled data. The hyperspectral reflectance approach to phenotyping was dramatically faster than traditional measurements, enabling over 1,000 rows to be phenotyped during midday hours over just 2 to 4 d, and offers a nondestructive method to accurately assess physiological and biochemical trait responses to environmental stress.


Asunto(s)
Hojas de la Planta/fisiología , Zea mays/fisiología , Quimera , Clorofila/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Análisis de los Mínimos Cuadrados , Modelos Biológicos , Nitrógeno/metabolismo , Fenotipo , Fotosíntesis/fisiología , Hojas de la Planta/química , Zea mays/genética
19.
Photosynth Res ; 137(3): 453-464, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29860702

RESUMEN

Species have different strategies for loading sugars into the phloem, which vary in the route that sugars take to enter the phloem and the energetics of sugar accumulation. Species with passive phloem loading are hypothesized to have less flexibility in response to changes in some environmental conditions because sucrose export from mesophyll cells is dependent on fixed anatomical plasmodesmatal connections. Passive phloem loaders also have high mesophyll sugar content, and may be less likely to exhibit sugar-mediated down-regulation of photosynthetic capacity at elevated CO2 concentrations. To date, the effect of phloem loading strategy on the response of plant carbon metabolism to rising atmospheric CO2 concentrations is unclear, despite the widespread impacts of rising CO2 on plants. Over three field seasons, five species with apoplastic loading, passive loading, or polymer-trapping were grown at ambient and elevated CO2 concentration in free air concentration enrichment plots. Light-saturated rate of photosynthesis, photosynthetic capacity, leaf carbohydrate content, and anatomy were measured and compared among the species. All five species showed significant stimulation in midday photosynthetic CO2 uptake by elevated CO2 even though the two passive loading species showed significant down-regulation of maximum Rubisco carboxylation capacity at elevated CO2. There was a trend toward greater starch accumulation at elevated CO2 in all species, and was most pronounced in passive loaders. From this study, we cannot conclude that phloem loading strategy is a key determinant of plant response to elevated CO2, but compelling differences in response counter to our hypothesis were observed. A phylogenetically controlled experiment with more species may be needed to fully test the hypothesis.


Asunto(s)
Dióxido de Carbono/metabolismo , Floema/metabolismo , Fotosíntesis , Plantas/metabolismo , Transporte Biológico , Carbohidratos/análisis , Carbono/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas , Células del Mesófilo/metabolismo , Floema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Plantas/anatomía & histología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
20.
Glob Chang Biol ; 24(2): e522-e533, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29110424

RESUMEN

Elevated atmospheric CO2 concentrations ([CO2 ]) are expected to increase C3 crop yield through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process-based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free-Air CO2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above-ground biomass production at elevated [CO2 ] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO2 ]. This study provides a link between localized experiments and regional-scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO2 ] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO2 ] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Sequías , Glycine max/crecimiento & desarrollo , Agricultura , Medio Oeste de Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA