Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 27(10): 1769-1781, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28877962

RESUMEN

MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species.


Asunto(s)
MicroARNs/biosíntesis , MicroARNs/genética , Procesamiento Postranscripcional del ARN/fisiología , Adulto , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Masculino , Especificidad de Órganos
2.
Nature ; 509(7502): 575-81, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24870542

RESUMEN

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Asunto(s)
Proteoma/metabolismo , Proteómica , Adulto , Células Cultivadas , Bases de Datos de Proteínas , Feto/metabolismo , Análisis de Fourier , Perfilación de la Expresión Génica , Genoma Humano/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Internet , Espectrometría de Masas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Especificidad de Órganos , Biosíntesis de Proteínas , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteoma/análisis , Proteoma/química , Proteoma/genética , Seudogenes/genética , ARN no Traducido/genética , Reproducibilidad de los Resultados , Regiones no Traducidas/genética
3.
BMC Cancer ; 15: 843, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26530123

RESUMEN

BACKGROUND: Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. METHODS: Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. RESULTS: The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. CONCLUSIONS: Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer.


Asunto(s)
Biomarcadores de Tumor/biosíntesis , Neoplasias de la Vesícula Biliar/genética , Oxidorreductasas Intramoleculares/biosíntesis , Factores Inhibidores de la Migración de Macrófagos/biosíntesis , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Detección Precoz del Cáncer , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Oxidorreductasas Intramoleculares/genética , Factores Inhibidores de la Migración de Macrófagos/genética , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de Neoplasias/biosíntesis , Proteómica
4.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34572866

RESUMEN

Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.

5.
Med Clin (Barc) ; 132(10): 371-6, 2009 Mar 21.
Artículo en Español | MEDLINE | ID: mdl-19268989

RESUMEN

BACKGROUND AND OBJECTIVE: Gene silencing mediated by the aberrant methylation of the promoter region of DNA is involved in the inactivation of genes implicated in various metabolic pathways. Such a gene hypermethylation has become a useful molecular marker for the diagnosis, treatment and follow-up of cancer patients. Our objective is to analyze the patterns of gene hypermethylation in patients with gynecological tumors. PATIENTS AND METHODS: We selected 115 patients with gynecological cancers: 22 ovarian; 13 endometrial, 11 cervical-uterine and 69 breast cancers. By testing methylation-specific PCR, we studied the methylation status of genes CDNK2A (p16), APC1A, FHIT, CDH1 and hMLH1. RESULTS: The frequencies of gene methylation in genes p16, APC1A, FHIT, hMLH1 and CDH1 were 29.2%, 34%, 60.4%, 10.9% and 79.8%, respectively. 70% of cases showed at least two methylated genes, which means a rate of methylation >0.4. The lowest frequency of methylation was seen in ovarian cancer, while the highest one was observed in endometrial cancer. CONCLUSIONS: The results indicate that the aberrant methylation of the promoter region is an important event in carcinogenesis of gynecological tumors and that the pattern of gene methylation is associated with the nature of the tumor. These particular characteristics can deliver relevant information on the major metabolic pathways altered in each tumor type. In addition to complementary studies (ie, loss of expression and/or function), this represents a clinical tool for the proper management of the disease.


Asunto(s)
Metilación de ADN , Neoplasias de los Genitales Femeninos/genética , Regiones Promotoras Genéticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Persona de Mediana Edad
6.
J Cell Commun Signal ; 13(2): 163-177, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30666556

RESUMEN

Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.

7.
Oncotarget ; 8(16): 26169-26184, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28412732

RESUMEN

Gallbladder cancer (GBC) is a lethal cancer with poor prognosis associated with high invasiveness and poor response to chemotherapy and radiotherapy. New therapeutic approaches are urgently needed in order to improve survival and response rates of GBC patients. We screened 130 small molecule inhibitors on a panel of seven GBC cell lines and identified the HSP90 inhibitor 17-AAG as one of the most potent inhibitory drugs across the different lines. We tested the antitumor efficacy of 17-AAG and geldanamycin (GA) in vitro and in a subcutaneous preclinical tumor model NOD-SCID mice. We also evaluated the expression of HSP90 by immunohistochemistry in human GBC tumors.In vitro assays showed that 17-AAG and GA significantly reduced the expression of HSP90 target proteins, including EGFR, AKT, phospho-AKT, Cyclin B1, phospho-ERK and Cyclin D1. These molecular changes were consistent with reduced cell viability and cell migration and promotion of G2/M cell cycle arrest and apoptosis observed in our in vitro studies.In vivo, 17-AAG showed efficacy in reducing subcutaneous tumors size, exhibiting a 69.6% reduction in tumor size in the treatment group compared to control mice (p < 0.05).The HSP90 immunohistochemical staining was seen in 182/209 cases of GBC (87%) and it was strongly expressed in 70 cases (33%), moderately in 58 cases (28%), and weakly in 54 cases (26%).Our pre-clinical observations strongly suggest that the inhibition of HSP90 function by HSP90 inhibitors is a promising therapeutic strategy for gallbladder cancer that may benefit from new HSP90 inhibitors currently in development.


Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias de la Vesícula Biliar , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Bibliotecas de Moléculas Pequeñas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Oncotarget ; 6(30): 29143-60, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26356563

RESUMEN

Breast cancer is the most prevalent cancer in women worldwide. About 15-20% of all breast cancers are triple negative breast cancer (TNBC) and are often highly aggressive when compared to other subtypes of breast cancers. To better characterize the biology that underlies the TNBC phenotype, we profiled the phosphotyrosine proteome of a panel of twenty-six TNBC cell lines using quantitative high resolution Fourier transform mass spectrometry. A heterogeneous pattern of tyrosine kinase activation was observed based on 1,789 tyrosine-phosphorylated peptides identified from 969 proteins. One of the tyrosine kinases, AXL, was found to be activated in a majority of aggressive TNBC cell lines and was accompanied by a higher level of AXL expression. High levels of AXL expression are correlated with a significant decrease in patient survival. Treatment of cells bearing activated AXL with a humanized AXL antibody inhibited cell proliferation and migration in vitro, and tumor growth in mice. Overall, our global phosphoproteomic analysis provided new insights into the heterogeneity in the activation status of tyrosine kinase pathways in TNBCs. Our approach presents an effective means of identifying important novel biomarkers and targets for therapy such as AXL in TNBC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fosfotirosina/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteómica , Transducción de Señal , Neoplasias de la Mama Triple Negativas/enzimología , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Activación Enzimática , Femenino , Análisis de Fourier , Humanos , Estimación de Kaplan-Meier , Espectrometría de Masas , Ratones Endogámicos NOD , Ratones SCID , Terapia Molecular Dirigida , Fenotipo , Fosforilación , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/terapia , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
9.
Epigenetics ; 7(1): 106-12, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22207357

RESUMEN

The methylated DNA immunoprecipitation method (MeDIP) is a genome-wide, high-resolution approach that detects DNA methylation with oligonucleotide tiling arrays or high throughput sequencing platforms. A simplified high-throughput MeDIP assay will enable translational research studies in clinics and populations, which will greatly enhance our understanding of the human methylome. We compared three commercial kits, MagMeDIP Kit TM (Diagenode), Methylated-DNA IP Kit (Zymo Research) and Methylamp™ Methylated DNA Capture Kit (Epigentek), in order to identify which one has better reliability and sensitivity for genomic DNA enrichment. Each kit was used to enrich two samples, one from fresh tissue and one from a cell line, with two different DNA amounts. The enrichment efficiency of each kit was evaluated by agarose gel band intensity after Nco I digestion and by reaction yield of methylated DNA. A successful enrichment is expected to have a 1:4 to 10:1 conversion ratio and a yield of 80% or higher. We also evaluated the hybridization efficiency to genome-wide methylation arrays in a separate cohort of tissue samples. We observed that the MagMeDIP kit had the highest yield for the two DNA amounts and for both the tissue and cell line samples, as well as for the positive control. In addition, the DNA was successfully enriched from a 1:4 to 10:1 ratio. Therefore, the MagMeDIP kit is a useful research tool that will enable clinical and public health genome-wide DNA methylation studies.


Asunto(s)
Metilación de ADN , Técnicas Genéticas , Inmunoprecipitación/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Juego de Reactivos para Diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA