Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 208(1): 155-168, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34872976

RESUMEN

CD8+ memory T (TM) cells play a critical role in immune defense against infection. Two common γ-chain family cytokines, IL-2 and IL-7, although triggering the same mTORC1-S6K pathway, distinctly induce effector T (TE) cells and TM cells, respectively, but the underlying mechanism(s) remains elusive. In this study, we generated IL-7R-/and AMPKα1-knockout (KO)/OTI mice. By using genetic and pharmaceutical tools, we demonstrate that IL-7 deficiency represses expression of FOXO1, TCF1, p-AMPKα1 (T172), and p-ULK1 (S555) and abolishes T cell memory differentiation in IL-7R KO T cells after Listeria monocytogenesis rLmOVA infection. IL-2- and IL-7-stimulated strong and weak S6K (IL-2/S6Kstrong and IL-7/S6Kweak) signals control short-lived IL-7R-CD62L-KLRG1+ TE and long-term IL-7R+CD62L+KLRG1- TM cell formations, respectively. To assess underlying molecular pathway(s), we performed flow cytometry, Western blotting, confocal microscopy, and Seahorse assay analyses by using the IL-7/S6Kweak-stimulated TM (IL-7/TM) and the control IL-2/S6Kstrong-stimulated TE (IL-2/TE) cells. We determine that the IL-7/S6Kweak signal activates transcriptional FOXO1, TCF1, and Id3 and metabolic p-AMPKα1, p-ULK1, and ATG7 molecules in IL-7/TM cells. IL-7/TM cells upregulate IL-7R and CD62L, promote mitochondria biogenesis and fatty acid oxidation metabolism, and show long-term cell survival and functional recall responses. Interestingly, AMPKα1 deficiency abolishes the AMPKα1 but maintains the FOXO1 pathway and induces a metabolic switch from fatty acid oxidation to glycolysis in AMPKα1 KO IL-7/TM cells, leading to loss of cell survival and recall responses. Taken together, our data demonstrate that IL-7-stimulated weak strength of mTORC1-S6K signaling controls T cell memory via activation of transcriptional FOXO1-TCF1-Id3 and metabolic AMPKα1-ULK1-ATG7 pathways. This (to our knowledge) novel finding provides a new mechanism for a distinct IL-2/IL-7 stimulation model in T cell memory and greatly impacts vaccine development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Linfocitos T CD8-positivos/inmunología , Proteína Forkhead Box O1/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Interleucina-7/metabolismo , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células T de Memoria/inmunología , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Citotoxicidad Inmunológica , Ácidos Grasos/metabolismo , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica , Glucólisis , Factor Nuclear 1-alfa del Hepatocito/genética , Memoria Inmunológica , Proteínas Inhibidoras de la Diferenciación/genética , Interleucina-7/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-7/genética , Transducción de Señal , Desarrollo de Vacunas
2.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076931

RESUMEN

Two common γ-chain family cytokines IL-2 and IL-15 stimulate the same mammalian target of rapamycin complex-1 (mTORC1) signaling yet induce effector T (TE) and memory T (TM) cell differentiation via a poorly understood mechanism(s). Here, we prepared in vitro IL-2-stimulated TE (IL-2/TE) and IL-15-stimulated TM (IL-15/TM) cells for characterization by flow cytometry, Western blotting, confocal microscopy and Seahorse-assay analyses. We demonstrate that IL-2 and IL-15 stimulate strong and weak mTORC1 signals, respectively, which lead to the formation of CD62 ligand (CD62L)- killer cell lectin-like receptor subfamily G member-1 (KLRG)+ IL-2/TE and CD62L+KLRG- IL-15/TM cells with short- and long-term survival following their adoptive transfer into mice. The IL-15/mTORC1Weak signal activates the forkhead box-O-1 (FOXO1), T cell factor-1 (TCF1) and Eomes transcriptional network and the metabolic adenosine monophosphate-activated protein kinase-α-1 (AMPKα1), Unc-51-like autophagy-activating kinase-1 (ULK1) and autophagy-related gene-7 (ATG7) axis, increasing the expression of mitochondrial regulators aquaporin-9 (AQP9), mitochondrial transcription factor-A (TFAM), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), carnitine palmitoyl transferase-1 (CPT1α), microtubule-associated protein light chain-3 II (LC3II), Complex I and ortic atrophy-1 (OPA1), leading to promoting mitochondrial biogenesis and fatty-acid oxidation (FAO). Interestingly, AMPKα1 deficiency abrogates these downstream responses to IL-15/mTORC1Weak signaling, leading to the upregulation of mTORC1 and hypoxia-inducible factor-1α (HIF-1α), a metabolic switch from FAO to glycolysis and reduced cell survival. Taken together, our data demonstrate that IL-15/mTORC1Weak signaling controls T-cell memory via activation of the transcriptional FOXO1-TCF1-Eomes and metabolic AMPKα1-ULK1-ATG7 pathways, a finding that may greatly impact the development of efficient vaccines and immunotherapies for the treatment of cancer and infectious diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Diferenciación Celular , Interleucina-15 , Interleucina-2 , Respiración , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/fisiología , Interleucina-15/farmacología , Mamíferos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Linfocitos T
3.
Proc Natl Acad Sci U S A ; 115(32): 8161-8166, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038027

RESUMEN

Copper is an essential cofactor of cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial respiratory chain. Inherited loss-of-function mutations in several genes encoding proteins required for copper delivery to CcO result in diminished CcO activity and severe pathologic conditions in affected infants. Copper supplementation restores CcO function in patient cells with mutations in two of these genes, COA6 and SCO2, suggesting a potential therapeutic approach. However, direct copper supplementation has not been therapeutically effective in human patients, underscoring the need to identify highly efficient copper transporting pharmacological agents. By using a candidate-based approach, we identified an investigational anticancer drug, elesclomol (ES), that rescues respiratory defects of COA6-deficient yeast cells by increasing mitochondrial copper content and restoring CcO activity. ES also rescues respiratory defects in other yeast mutants of copper metabolism, suggesting a broader applicability. Low nanomolar concentrations of ES reinstate copper-containing subunits of CcO in a zebrafish model of copper deficiency and in a series of copper-deficient mammalian cells, including those derived from a patient with SCO2 mutations. These findings reveal that ES can restore intracellular copper homeostasis by mimicking the function of missing transporters and chaperones of copper, and may have potential in treating human disorders of copper metabolism.


Asunto(s)
Antineoplásicos/farmacología , Cobre/deficiencia , Drogas en Investigación/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Hidrazinas/farmacología , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Transporte Biológico/genética , Proteínas Portadoras/genética , Línea Celular , Coenzimas/deficiencia , Cobre/uso terapéutico , Transportador de Cobre 1 , Suplementos Dietéticos , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Drogas en Investigación/uso terapéutico , Fibroblastos , Humanos , Hidrazinas/uso terapéutico , Proteínas de Transporte de Membrana/genética , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Ratas , Saccharomyces cerevisiae , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008461

RESUMEN

Energy sensors mTORC1 and AMPKα1 regulate T-cell metabolism and differentiation, while rapamycin (Rapa)-inhibition of mTORC1 (RIM) promotes T-cell memory. However, the underlying pathway and the role of AMPKα1 in Rapa-induced T-cell memory remain elusive. Using genetic and pharmaceutical tools, we demonstrate that Rapa promotes T-cell memory in mice in vivo post Listeria monocytogenesis rLmOVA infection and in vitro transition of effector T (TE) to memory T (TM) cells. IL-2- and IL-2+Rapa-stimulated T [IL-2/T and IL-2(Rapa+)/T] cells, when transferred into mice, differentiate into short-term IL-7R-CD62L-KLRG1+ TE and long-lived IL-7R+CD62L+KLRG1- TM cells, respectively. To assess the underlying pathways, we performed Western blotting, confocal microscopy and Seahorse-assay analyses using IL-2/T and IL-2(Rapa+)/T-cells. We determined that IL-2(Rapa+)/T-cells activate transcription FOXO1, TCF1 and Eomes and metabolic pAMPKα1(T172), pULK1(S555) and ATG7 molecules and promote mitochondrial biogenesis and fatty-acid oxidation (FAO). We found that rapamycin-treated AMPKα-deficient AMPKα1-KO IL-2(Rapa+)/TM cells up-regulate transcription factor HIF-1α and induce a metabolic switch from FAO to glycolysis. Interestingly, despite the rapamycin treatment, AMPKα-deficient TM cells lost their cell survival capacity. Taken together, our data indicate that rapamycin promotes T-cell memory via transcriptional FOXO1-TCF1-Eomes programs and AMPKα1-ULK1-ATG7 metabolic axis, and that AMPKα1 plays a critical role in RIM-induced T-cell memory.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Memoria Inmunológica/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Sirolimus/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Proteína Forkhead Box O1/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Interleucina-2/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas de Dominio T Box/metabolismo
5.
J Biol Chem ; 293(13): 4644-4652, 2018 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28972150

RESUMEN

Cytochrome c oxidase (COX) was initially purified more than 70 years ago. A tremendous amount of insight into its structure and function has since been gleaned from biochemical, biophysical, genetic, and molecular studies. As a result, we now appreciate that COX relies on its redox-active metal centers (heme a and a3, CuA and CuB) to reduce oxygen and pump protons in a reaction essential for most eukaryotic life. Questions persist, however, about how individual structural subunits are assembled into a functional holoenzyme. Here, we focus on what is known and what remains to be learned about the accessory proteins that facilitate CuA site maturation.


Asunto(s)
Cobre , Complejo IV de Transporte de Electrones , Hemo/análogos & derivados , Subunidades de Proteína , Dominio Catalítico , Cobre/química , Cobre/metabolismo , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/química , Hemo/química , Hemo/metabolismo , Transporte Iónico/fisiología , Oxígeno/química , Oxígeno/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Protones
6.
J Biol Chem ; 293(6): 1887-1896, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29237729

RESUMEN

Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas Transportadoras de Solutos/metabolismo , Animales , Transporte Biológico , Proteínas de Transporte de Catión/genética , Complejo IV de Transporte de Electrones/genética , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Proteínas Transportadoras de Solutos/genética
7.
Hum Mol Genet ; 26(23): 4617-4628, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973536

RESUMEN

SCO1 is a ubiquitously expressed, mitochondrial protein with essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper homeostasis. SCO1 patients present with severe forms of early onset disease, and ultimately succumb from liver, heart or brain failure. However, the inherent susceptibility of these tissues to SCO1 mutations and the clinical heterogeneity observed across SCO1 pedigrees remain poorly understood phenomena. To further address this issue, we generated Sco1hrt/hrt and Sco1stm/stm mice in which Sco1 was specifically deleted in heart and striated muscle, respectively. Lethality was observed in both models due to a combined COX and copper deficiency that resulted in a dilated cardiomyopathy. Left ventricular dilation and loss of heart function was preceded by a temporal decrease in COX activity and copper levels in the longer-lived Sco1stm/stm mice. Interestingly, the reduction in copper content of Sco1stm/stm cardiomyocytes was due to the mislocalisation of CTR1, the high affinity transporter that imports copper into the cell. CTR1 was similarly mislocalized to the cytosol in the heart of knockin mice carrying a homozygous G115S substitution in Sco1, which in humans causes a hypertrophic cardiomyopathy. Our current findings in the heart are in marked contrast to our prior observations in the liver, where Sco1 deletion results in a near complete absence of CTR1 protein. These data collectively argue that mutations perturbing SCO1 function have tissue-specific consequences for the machinery that ultimately governs copper homeostasis, and further establish the importance of aberrant mitochondrial signaling to the etiology of copper handling disorders.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Membrana Celular/metabolismo , Cobre/deficiencia , Transportador de Cobre 1 , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/genética , Homeostasis , Transporte Iónico , Metalochaperonas/genética , Metalochaperonas/metabolismo , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Transducción de Señal
8.
Hum Mol Genet ; 23(11): 2901-13, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24403053

RESUMEN

Cytochrome c oxidase (CIV) deficiency is one of the most common respiratory chain defects in patients presenting with mitochondrial encephalocardiomyopathies. CIV biogenesis is complicated by the dual genetic origin of its structural subunits, and assembly of a functional holoenzyme complex requires a large number of nucleus-encoded assembly factors. In general, the functions of these assembly factors remain poorly understood, and mechanistic investigations of human CIV biogenesis have been limited by the availability of model cell lines. Here, we have used small interference RNA and transcription activator-like effector nucleases (TALENs) technology to create knockdown and knockout human cell lines, respectively, to study the function of the CIV assembly factor COX20 (FAM36A). These cell lines exhibit a severe, isolated CIV deficiency due to instability of COX2, a mitochondrion-encoded CIV subunit. Mitochondria lacking COX20 accumulate CIV subassemblies containing COX1 and COX4, similar to those detected in fibroblasts from patients carrying mutations in the COX2 copper chaperones SCO1 and SCO2. These results imply that in the absence of COX20, COX2 is inefficiently incorporated into early CIV subassemblies. Immunoprecipitation assays using a stable COX20 knockout cell line expressing functional COX20-FLAG allowed us to identify an interaction between COX20 and newly synthesized COX2. Additionally, we show that SCO1 and SCO2 act on COX20-bound COX2. We propose that COX20 acts as a chaperone in the early steps of COX2 maturation, stabilizing the newly synthesized protein and presenting COX2 to its metallochaperone module, which in turn facilitates the incorporation of mature COX2 into the CIV assembly line.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclooxigenasa 2/metabolismo , Deficiencia de Citocromo-c Oxidasa/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/genética , Línea Celular , Ciclooxigenasa 2/genética , Deficiencia de Citocromo-c Oxidasa/genética , Deficiencia de Citocromo-c Oxidasa/metabolismo , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Estabilidad Proteica
9.
J Biol Chem ; 288(33): 23884-92, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23846699

RESUMEN

Saccharomyces cerevisiae must import copper into the mitochondrial matrix for eventual assembly of cytochrome c oxidase. This copper is bound to an anionic fluorescent molecule known as the copper ligand (CuL). Here, we identify for the first time a mitochondrial carrier family protein capable of importing copper into the matrix. In vitro transport of the CuL into the mitochondrial matrix was saturable and temperature-dependent. Strains with a deletion of PIC2 grew poorly on copper-deficient non-fermentable medium supplemented with silver and under respiratory conditions when challenged with a matrix-targeted copper competitor. Mitochondria from pic2Δ cells had lower total mitochondrial copper and exhibited a decreased capacity for copper uptake. Heterologous expression of Pic2 in Lactococcus lactis significantly enhanced CuL transport into these cells. Therefore, we propose a novel role for Pic2 in copper import into mitochondria.


Asunto(s)
Cobre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Eliminación de Gen , Humanos , Lactococcus lactis/metabolismo , Ligandos , Fenotipo , Saccharomyces cerevisiae/crecimiento & desarrollo , Plata/metabolismo , Superóxido Dismutasa/metabolismo
10.
Hum Mutat ; 34(10): 1366-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878101

RESUMEN

Isolated cytochrome c oxidase (COX) deficiency is a common cause of mitochondrial disease, yet its genetic basis remains unresolved in many patients. Here, we identified novel compound heterozygous mutations in SCO1 (p.M294V, p.Val93*) in one such patient with fatal encephalopathy. The patient lacked the severe hepatopathy (p.P174L) or hypertrophic cardiomyopathy (p.G132S) observed in previously reported SCO1 cases, so we investigated whether allele-specific defects in SCO1 function might underlie the genotype-phenotype relationships. Fibroblasts expressing p.M294V had a relatively modest decrease in COX activity compared with those expressing p.P174L, whereas both SCO1 lines had marked copper deficiencies. Overexpression of known pathogenic variants in SCO1 fibroblasts showed that p.G132S exacerbated the COX deficiency, whereas COX activity was partially or fully restored by p.P174L and p.M294V, respectively. These data suggest that the clinical phenotypes in SCO1 patients might reflect the residual capacity of the pathogenic alleles to perform one or both functions of SCO1.


Asunto(s)
Acidosis Láctica/genética , Proteínas de la Membrana/genética , Mutación , Atrofias Olivopontocerebelosas/genética , Acidosis Láctica/metabolismo , Alelos , Secuencia de Aminoácidos , Análisis Mutacional de ADN , Resultado Fatal , Orden Génico , Humanos , Lactante , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares , Datos de Secuencia Molecular , Atrofias Olivopontocerebelosas/metabolismo , Alineación de Secuencia
11.
J Clin Invest ; 133(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36301669

RESUMEN

Signaling circuits crucial to systemic physiology are widespread, yet uncovering their molecular underpinnings remains a barrier to understanding the etiology of many metabolic disorders. Here, we identified a copper-linked signaling circuit activated by disruption of mitochondrial function in the murine liver or heart that resulted in atrophy of the spleen and thymus and caused a peripheral white blood cell deficiency. We demonstrated that the leukopenia was caused by α-fetoprotein, which required copper and the cell surface receptor CCR5 to promote white blood cell death. We further showed that α-fetoprotein expression was upregulated in several cell types upon inhibition of oxidative phosphorylation. Collectively, our data argue that α-fetoprotein may be secreted by bioenergetically stressed tissue to suppress the immune system, an effect that may explain the recurrent or chronic infections that are observed in a subset of mitochondrial diseases or in other disorders with secondary mitochondrial dysfunction.


Asunto(s)
Cobre , Enfermedades Mitocondriales , Ratones , Animales , Cobre/metabolismo , alfa-Fetoproteínas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Terapia de Inmunosupresión
12.
Cell Metab ; 5(1): 9-20, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17189203

RESUMEN

Human SCO1 and SCO2 are metallochaperones that are essential for the assembly of the catalytic core of cytochrome c oxidase (COX). Here we show that they have additional, unexpected roles in cellular copper homeostasis. Mutations in either SCO result in a cellular copper deficiency that is both tissue and allele specific. This phenotype can be dissociated from the defects in COX assembly and is suppressed by overexpression of SCO2, but not SCO1. Overexpression of a SCO1 mutant in control cells in which wild-type SCO1 levels were reduced by shRNA recapitulates the copper-deficiency phenotype in SCO1 patient cells. The copper-deficiency phenotype reflects not a change in high-affinity copper uptake but rather a proportional increase in copper efflux. These results suggest a mitochondrial pathway for the regulation of cellular copper content that involves signaling through SCO1 and SCO2, perhaps by their thiol redox or metal-binding state.


Asunto(s)
Proteínas Portadoras/metabolismo , Cobre/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Homeostasis , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Alelos , Proteínas Portadoras/genética , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Cobre/deficiencia , Transportador de Cobre 1 , Fibroblastos , Humanos , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Mutación , Especificidad de Órganos , Fenotipo , Transducción de Señal
13.
J Am Chem Soc ; 133(22): 8606-16, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21563821

RESUMEN

We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.


Asunto(s)
Proteínas Portadoras/química , Cobre/química , Colorantes Fluorescentes/química , Proteínas de la Membrana/química , Mitocondrias/química , Proteínas Mitocondriales/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cobre/metabolismo , Fibroblastos/química , Fibroblastos/metabolismo , Células HEK293 , Homeostasis , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Imagen Molecular
14.
Hum Mol Genet ; 18(12): 2230-40, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19336478

RESUMEN

Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not in SCO1, cells. Despite this biosynthetic defect, newly synthesized CO II is more stable in SCO2 cells than in control cells. RNAi-mediated knockdown of mutant SCO2 abolishes CO II labeling in the translation assay, whereas knockdown of mutant SCO1 does not affect CO II synthesis. These results indicate that SCO2 acts upstream of SCO1, and that it is indispensable for CO II synthesis. The subsequent maturation of CO II is contingent upon the formation of a complex that includes both SCO proteins, each with a functional CxxxC copper-coordinating motif. In control cells, the cysteines in this motif in SCO1 exist as a mixed population comprised of oxidized disulphides and reduced thiols; however, the relative ratio of oxidized to reduced cysteines in SCO1 is perturbed in cells from both SCO backgrounds. Overexpression of wild-type SCO2, or knockdown of mutant SCO2, in SCO2 cells alters the ratio of oxidized to reduced cysteines in SCO1, suggesting that SCO2 acts as a thiol-disulphide oxidoreductase to oxidize the copper-coordinating cysteines in SCO1 during CO II maturation. Based on these data we present a model in which each SCO protein fulfills distinct, stage-specific functions during CO II synthesis and CuA site maturation.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejo IV de Transporte de Electrones/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Disulfuro Reductasa (Glutatión)/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Complejo IV de Transporte de Electrones/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Mutación , Oxidación-Reducción , Proteína Disulfuro Reductasa (Glutatión)/genética
15.
Circ Res ; 105(7): 705-12, 11 p following 712, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19696408

RESUMEN

RATIONALE: Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. OBJECTIVE: The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. METHODS AND RESULTS: Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. CONCLUSIONS: Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.


Asunto(s)
ADN Mitocondrial/metabolismo , Tolerancia al Ejercicio , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/metabolismo , Esfuerzo Físico , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Tolerancia al Ejercicio/genética , Glucólisis/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Fuerza Muscular , Mutación , Miocardio/metabolismo , Consumo de Oxígeno , Interferencia de ARN , Elementos de Respuesta , Natación , Factores de Tiempo , Transducción Genética , Transfección , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Regulación hacia Arriba , Función Ventricular Izquierda
16.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118867, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979421

RESUMEN

Mitochondria accumulate copper in their matrix for the eventual maturation of the cuproenzymes cytochrome c oxidase and superoxide dismutase. Transport into the matrix is achieved by mitochondrial carrier family (MCF) proteins. The major copper transporting MCF described to date in yeast is Pic2, which imports the metal ion into the matrix. Pic2 is one of ~30 MCFs that move numerous metabolites, nucleotides and co-factors across the inner membrane for use in the matrix. Genetic and biochemical experiments showed that Pic2 is required for cytochrome c oxidase activity under copper stress, and that it is capable of transporting ionic and complexed forms of copper. The Pic2 ortholog SLC25A3, one of 53 mammalian MCFs, functions as both a copper and a phosphate transporter. Depletion of SLC25A3 results in decreased accumulation of copper in the matrix, a cytochrome c oxidase defect and a modulation of cytosolic superoxide dismutase abundance. The regulatory roles for copper and cuproproteins resident to the mitochondrion continue to expand beyond the organelle. Mitochondrial copper chaperones have been linked to the modulation of cellular copper uptake and export and the facilitation of inter-organ communication. Recently, a role for matrix copper has also been proposed in a novel cell death pathway termed cuproptosis. This review will detail our understanding of the maturation of mitochondrial copper enzymes, the roles of mitochondrial signals in regulating cellular copper content, the proposed mechanisms of copper transport into the organelle and explore the evolutionary origins of copper homeostasis pathways.


Asunto(s)
Cobre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
17.
Elife ; 102021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33591272

RESUMEN

The mitochondrial carrier family protein SLC25A3 transports both copper and phosphate in mammals, yet in Saccharomyces cerevisiae the transport of these substrates is partitioned across two paralogs: PIC2 and MIR1. To understand the ancestral state of copper and phosphate transport in mitochondria, we explored the evolutionary relationships of PIC2 and MIR1 orthologs across the eukaryotic tree of life. Phylogenetic analyses revealed that PIC2-like and MIR1-like orthologs are present in all major eukaryotic supergroups, indicating an ancient gene duplication created these paralogs. To link this phylogenetic signal to protein function, we used structural modeling and site-directed mutagenesis to identify residues involved in copper and phosphate transport. Based on these analyses, we generated an L175A variant of mouse SLC25A3 that retains the ability to transport copper but not phosphate. This work highlights the utility of using an evolutionary framework to uncover amino acids involved in substrate recognition by mitochondrial carrier family proteins.


Asunto(s)
Evolución Biológica , Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Eucariontes , Ratones , Mitocondrias , Proteínas Mitocondriales/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Sci Rep ; 11(1): 431, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432101

RESUMEN

The pool of ß-Amyloid (Aß) length variants detected in preclinical and clinical Alzheimer disease (AD) samples suggests a diversity of roles for Aß peptides. We examined how a naturally occurring variant, e.g. Aß(1-38), interacts with the AD-related variant, Aß(1-42), and the predominant physiological variant, Aß(1-40). Atomic force microscopy, Thioflavin T fluorescence, circular dichroism, dynamic light scattering, and surface plasmon resonance reveal that Aß(1-38) interacts differently with Aß(1-40) and Aß(1-42) and, in general, Aß(1-38) interferes with the conversion of Aß(1-42) to a ß-sheet-rich aggregate. Functionally, Aß(1-38) reverses the negative impact of Aß(1-42) on long-term potentiation in acute hippocampal slices and on membrane conductance in primary neurons, and mitigates an Aß(1-42) phenotype in Caenorhabditis elegans. Aß(1-38) also reverses any loss of MTT conversion induced by Aß(1-40) and Aß(1-42) in HT-22 hippocampal neurons and APOE ε4-positive human fibroblasts, although the combination of Aß(1-38) and Aß(1-42) inhibits MTT conversion in APOE ε4-negative fibroblasts. A greater ratio of soluble Aß(1-42)/Aß(1-38) [and Aß(1-42)/Aß(1-40)] in autopsied brain extracts correlates with an earlier age-at-death in males (but not females) with a diagnosis of AD. These results suggest that Aß(1-38) is capable of physically counteracting, potentially in a sex-dependent manner, the neuropathological effects of the AD-relevant Aß(1-42).


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos adversos , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/farmacología , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/farmacología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Caenorhabditis elegans , Células Cultivadas , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo
19.
Cell Rep ; 36(11): 109704, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525369

RESUMEN

Histone variants are crucial regulators of chromatin structure and gene transcription, yet their functions within the brain remain largely unexplored. Here, we show that the H2A histone variant H2A.Z is essential for neuronal survival. Mice lacking H2A.Z in GABAergic neurons or Purkinje cells (PCs) present with a progressive cerebellar ataxia accompanied by widespread degeneration of PCs. Ablation of H2A.Z in other neuronal subtypes also triggers cell death. H2A.Z binds to the promoters of key nuclear-encoded mitochondrial genes to regulate their expression and promote organelle function. Bolstering mitochondrial activity genetically or by organelle transplant enhances the survival of H2A.Z-ablated neurons. Changes in bioenergetic status alter H2A.Z occupancy at the promoters of nuclear-encoded mitochondrial genes, an adaptive response essential for cell survival. Our results highlight that H2A.Z fulfills a key, conserved role in neuronal survival by acting as a transcriptional rheostat to regulate the expression of genes critical to mitochondrial function.


Asunto(s)
Núcleo Celular/metabolismo , Histonas/genética , Mitocondrias/metabolismo , Transcriptoma , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/metabolismo , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Histonas/deficiencia , Histonas/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Fosforilación Oxidativa , Células de Purkinje/citología , Células de Purkinje/metabolismo , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba
20.
Biochim Biophys Acta ; 1793(1): 146-53, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18522804

RESUMEN

Mitochondria contain two enzymes, Cu,Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondrial copper handling with other, extramitochondrial copper trafficking pathways. The recent finding that mitochondrial proteins with established roles in CcO assembly can also effect changes in cellular copper levels by modulating copper efflux from the cell supports a mechanistic link between organellar and cellular copper metabolism. However, the proteins and molecular mechanisms that link trafficking of copper to and from the organelle with other cellular copper trafficking pathways are unknown. This review documents our current understanding of copper trafficking to, and within, the mitochondrion for metallation of CcO and Sod1; the pathways by which the two copper centers in CcO are formed; and, the interconnections between mitochondrial function and the regulation of cellular copper homeostasis.


Asunto(s)
Cobre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Mitocondrias/enzimología , Modelos Biológicos , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA