Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Biophys J ; 122(15): 3117-3132, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37353934

RESUMEN

Artificial proteins representing the consensus of a set of homologous sequences have attracted attention for their increased thermodynamic stability and conserved activity. Here, we applied the consensus approach to a b-type heme-binding protein to inspect the contribution of a dissociable cofactor to enhanced stability and the chemical consequences of creating a generic heme environment. We targeted the group 1 truncated hemoglobin (TrHb1) subfamily of proteins for their small size (∼120 residues) and ease of characterization. The primary structure, derived from a curated set of ∼300 representative sequences, yielded a highly soluble consensus globin (cGlbN) enriched in acidic residues. Optical and NMR spectroscopies revealed high-affinity heme binding in the expected site and in two orientations. At neutral pH, proximal and distal iron coordination was achieved with a pair of histidine residues, as observed in some natural TrHb1s, and with labile ligation on the distal side. As opposed to studied TrHb1s, which undergo additional folding upon heme binding, cGlbN displayed the same extent of secondary structure whether the heme was associated with the protein or not. Denaturation required guanidine hydrochloride and showed that apo- and holoprotein unfolded in two transitions-the first (occurring with a midpoint of ∼2 M) was shifted to higher denaturant concentration in the holoprotein (∼3.7 M) and reflected stabilization due to heme binding, while the second transition (∼6.2 M) was common to both forms. Thus, the consensus sequence stabilized the protein but exposed the existence of two separately cooperative subdomains within the globin architecture, masked as one single domain in TrHb1s with typical stabilities. The results suggested ways in which specific chemical or thermodynamic features may be controlled in artificial heme proteins.


Asunto(s)
Globinas , Hemoproteínas , Globinas/química , Pliegue de Proteína , Termodinámica , Hemo/metabolismo , Desnaturalización Proteica
2.
Biochemistry ; 57(40): 5785-5796, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30213188

RESUMEN

Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Hemoglobinas/química , Synechocystis/química , Hemoglobinas Truncadas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Hemo/genética , Hemo/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Hemoglobinas Truncadas/genética , Hemoglobinas Truncadas/metabolismo
3.
Biochemistry ; 57(5): 631-644, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29271191

RESUMEN

The hemoglobin of Synechococcus sp. PCC 7002, GlbN, is a monomeric group I truncated protein (TrHb1) that coordinates the heme iron with two histidine ligands at neutral pH. One of these is the distal histidine (His46), a residue that can be displaced by dioxygen and other small molecules. Here, we show with mutagenesis, electronic absorption spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy that at high pH and exclusively in the ferrous state, Lys42 competes with His46 for the iron coordination site. When b heme is originally present, the population of the lysine-bound species remains too small for detailed characterization; however, the population can be increased significantly by using dimethyl-esterified heme. Electronic absorption and NMR spectroscopies showed that the reversible ligand switching process occurs with an apparent pKa of 9.3 and a Lys-ligated population of ∼60% at the basic pH limit in the modified holoprotein. The switching rate, which is slow on the chemical shift time scale, was estimated to be 20-30 s-1 by NMR exchange spectroscopy. Lys42-His46 competition and attendant conformational rearrangement appeared to be related to weakened bis-histidine ligation and enhanced backbone dynamics in the ferrous protein. The pH- and redox-dependent ligand exchange process observed in GlbN illustrates the structural plasticity allowed by the TrHb1 fold and demonstrates the importance of electrostatic interactions at the heme periphery for achieving axial ligand selection. An analogy is drawn to the alkaline transition of cytochrome c, in which Lys-Met competition is detected at alkaline pH, but, in contrast to GlbN, in the ferric state only.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Synechococcus/química , Hemoglobinas Truncadas/química , Secuencia de Aminoácidos , Complejos de Coordinación/química , Esterificación , Histidina/química , Concentración de Iones de Hidrógeno , Hierro/química , Lisina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Presión , Propionatos , Conformación Proteica , Pliegue de Proteína , Protoporfirinas/química , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática
4.
Biochemistry ; 56(4): 551-569, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28032976

RESUMEN

Nitrate metabolism in Chlamydomonas reinhardtii involves THB1, a monomeric hemoglobin thought to function as a nitric oxide dioxygenase (NOD). NOD activity requires dioxygen and nitric oxide binding followed by a one-electron oxidation of the heme iron and nitrate release. Unlike pentacoordinate flavohemoglobins, which are efficient NODs, THB1 uses two iron axial ligands: the conserved proximal histidine and a distal lysine (Lys53). As a ligand in both the oxidized (ferric) and reduced (ferrous) states, Lys53 is expected to lower the reorganization energy associated with electron transfer and therefore facilitate reduction of the ferric enzyme. In ferrous THB1, however, Lys53 must be displaced for substrate binding. To characterize Lys53 dynamics, THB1 was studied at various pH, temperatures, and pressures by NMR spectroscopy. Structural information indicates that the protein fold and Lys53 environment are independent of the oxidation state. High-pressure NMR experiments provided evidence that displacement of Lys53 occurs through fast equilibrium (∼3-4 × 103 s-1 at 1 bar, 298 K) with a low-population intermediate in which Lys53 is neutral and decoordinated. Once decoordinated, Lys53 is able to orient toward solvent and become protonated. The global lysine decoordination/reorientation/protonation processes measured by 15Nz-exchange spectroscopy are slow on the chemical shift time scale (101-102 s-1 at pH ≈ 6.5, 298 K) in both iron redox states. Thus, reorientation/protonation steps in ferrous THB1 appear to present a significant barrier for dioxygen binding, and consequently, NOD turnover. The results illustrate the role of distal ligand dynamics in regulating the kinetics of multistep heme redox reactions.


Asunto(s)
Proteínas Algáceas/química , Chlamydomonas reinhardtii/química , Hemo/química , Hemoglobinas/química , Lisina/química , Oxigenasas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonación Molecular , Transporte de Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hemo/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Lisina/metabolismo , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Termodinámica
5.
Biophys J ; 118(6): 1235-1237, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32070479
6.
Biochemistry ; 54(46): 6896-908, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26523621

RESUMEN

In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules.


Asunto(s)
Histidina/química , Proteínas/química , Hemoglobinas Truncadas/química , Proteínas Bacterianas/química , Chlamydomonas/química , Citocromos b5/química , Hemo/química , Hemoglobinas/química , Enlace de Hidrógeno , Metahemoglobina/análogos & derivados , Metahemoglobina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Synechococcus/química , Synechocystis/química
7.
J Am Chem Soc ; 137(3): 1008-11, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25578373

RESUMEN

In biomolecules, bifurcated H-bonds typically involve the interaction of two donor protons with the two lone pairs of oxygen. Here, we present direct NMR evidence for a bifurcated H-bonding arrangement involving nitrogen as the acceptor atom. Specifically, the H-bond network comprises the Nδ1 atom of histidine and both the backbone N-H and side-chain Oγ-H of threonine within the conserved TXXH motif of ankyrin repeat (AR) proteins. Identification of the H-bonding partners is achieved via solution NMR H-bond scalar coupling (HBC) and H/D isotope shift experiments. Quantitative determination of (2h)J(NN) HBCs supports that Thr N-H···Nδ1 His H-bonds within internal repeats are stronger (∼4 Hz) than in the solvent exposed C-terminal AR (∼2 Hz). In agreement, pKa values for the buried histidines bridging internal ARs are several units lower than those of the C-terminus. Quantum chemical calculations show that the relevant (2h)J and (1h)J couplings are dominated by the Fermi contact interaction. Finally, a Thr-to-Val replacement, which eliminates the Thr Oγ-H···Nδ1 His H-bond and decreases protein stability, results in a 25% increase in (2h)J(NN), attributed to optimization of the Val N-H···Nδ1 His H-bond. Overall, the results provide new insights into the H-bonding properties of histidine, a refined structural rationalization for the folding cooperativity of AR proteins, and a challenging benchmark for the calculation of HBCs.


Asunto(s)
Repetición de Anquirina , Ancirinas/química , Resonancia Magnética Nuclear Biomolecular , Enlace de Hidrógeno , Modelos Moleculares , Teoría Cuántica
8.
Biochemistry ; 53(28): 4573-89, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24964018

RESUMEN

The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/biosíntesis , Regulación de la Expresión Génica de las Plantas/fisiología , Hemoglobinas/biosíntesis , Lisina/metabolismo , Nitrógeno/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Hemo/química , Hemo/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Concentración de Iones de Hidrógeno , Lisina/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrógeno/química
9.
Biochim Biophys Acta ; 1834(9): 1910-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23619242

RESUMEN

The 2/2 hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002, GlbN, coordinates the heme iron with two histidines and exists either with a b heme or with a covalently attached heme. The binding of exogenous ligands displaces the distal histidine and induces a conformational rearrangement involving the reorganization of internal void volumes. The formation of passageways within the resulting conformation is thought to facilitate ligand exchange and play a functional role. Here we monitored the perturbation induced by pressure on the ferric bis-histidine and cyanide-bound states of GlbN using (1)H-(15)N HSQC NMR spectroscopy. We inspected the outcome with a statistical analysis of 170 homologous 2/2 hemoglobin sequences. We found that the compression landscape of GlbN, as represented by the variation of an average chemical shift parameter, was highly sensitive to ligand swapping and heme covalent attachment. Stabilization of rare conformers was observed at high pressures and consistent with cavity redistribution upon ligand binding. In all states, the EF loop was found to be exceptionally labile to pressure, suggesting a functional role as a semi-flexible hinge between the adjacent helices. Finally, coevolved clusters presented a common pattern of compensating pressure responses. The high-pressure dissection combined with protein sequence analysis established locations with volumetric signatures relevant to residual communication of 2/2 hemoglobins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Asunto(s)
Hemoglobinas/metabolismo , Espectroscopía de Resonancia Magnética , Synechococcus/metabolismo , Secuencia de Aminoácidos , Cianuros/química , Cianuros/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hemoglobinas/química , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Presión , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional
10.
Proteins ; 82(3): 528-34, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23999883

RESUMEN

The X-ray structures of the hemoglobin from Synechococcus sp. PCC 7002 (GlbN) were solved in the ferric bis-histidine (1.44 Å resolution) and cyanide-bound (2.25 Å resolution) states with covalently attached heme. The two structures illustrate the conformational changes and cavity opening caused by exogenous ligand binding. They also reveal an unusually distorted heme, ruffled as in c cytochromes. Comparison to the solution structure demonstrates the influence of crystal packing on several structural elements, whereas comparison to GlbN from Synechocystis sp. PCC 6803 shows subtle differences in heme geometries and environment. The new structures will be instrumental in elucidating GlbN reactivity.


Asunto(s)
Cristalografía por Rayos X/métodos , Hemo/química , Hemoglobinas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Synechococcus/química , Modelos Moleculares , Conformación Proteica
11.
Adv Microb Physiol ; 85: 97-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059824

RESUMEN

The globin superfamily of proteins is ancient and diverse. Regular assessments based on the increasing number of available genome sequences have elaborated on a complex evolutionary history. In this review, we present a summary of a decade of advances in characterising the globins of cyanobacteria and green algae. The focus is on haem-containing globins with an emphasis on recent experimental developments, which reinforce links to nitrogen metabolism and nitrosative stress response in addition to dioxygen management. Mention is made of globins that do not bind haem to provide an encompassing view of the superfamily and perspective on the field. It is reiterated that an effort toward phenotypical and in-vivo characterisation is needed to elucidate the many roles that these versatile proteins fulfil in oxygenic photosynthetic microbes. It is also proposed that globins from oxygenic organisms are promising proteins for applications in the biotechnology arena.


Asunto(s)
Chlorophyta , Cianobacterias , Globinas , Cianobacterias/metabolismo , Cianobacterias/genética , Chlorophyta/metabolismo , Chlorophyta/genética , Globinas/genética , Globinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hemo/metabolismo , Nitrógeno/metabolismo , Fotosíntesis
12.
J Inorg Biochem ; 259: 112654, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959524

RESUMEN

In our continued investigations of microbial globins, we solved the structure of a truncated hemoglobin from Shewanella benthica, an obligate psychropiezophilic bacterium. The distal side of the heme active site is lined mostly with hydrophobic residues, with the exception of a tyrosine, Tyr34 (CD1) and a histidine, His24 (B13). We found that purified SbHbN, when crystallized in the ferric form with polyethylene glycol as precipitant, turned into a green color over weeks. The electron density obtained from the green crystals accommodated a trans heme d, a chlorin-type derivative featuring a γ-spirolactone and a vicinal hydroxyl group on a pyrroline ring. In solution, exposure of the protein to one equivalent of hydrogen peroxide resulted in a similar green color change, but caused by the formation of multiple products. These were oxidation species released on protein denaturation, likely including heme d, and a species with heme covalently attached to the polypeptide. The Tyr34Phe replacement prevented the formation of both heme d and the covalent linkage. The ready modification of heme b by SbHbN expands the range of chemistries supported by the globin fold and offers a route to a novel heme cofactor.


Asunto(s)
Hemo , Shewanella , Shewanella/metabolismo , Shewanella/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Cristalografía por Rayos X , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo
13.
Biochemistry ; 52(20): 3478-88, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23607716

RESUMEN

Iron-protoporphyrin IX, or b heme, is utilized as such by a large number of proteins and enzymes. In some cases, notably the c-type cytochromes, this group undergoes a posttranslational covalent attachment to the polypeptide chain, which adjusts the physicochemical properties of the holoprotein. The hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 (GlbN), contrary to the archetypical hemoglobin, modifies its b heme covalently. The posttranslational modification links His117, a residue that does not coordinate the iron, to the porphyrin 2-vinyl substituent and forms a hybrid b/c heme. The reaction is an electrophilic addition that occurs spontaneously in the ferrous state of the protein. This apparently facile type of heme modification has been observed in only two cyanobacterial GlbNs. To explore the determinants of the reaction, we examined the behavior of Synechocystis GlbN variants containing a histidine at position 79, which is buried against the porphyrin 4-vinyl substituent. We found that L79H/H117A GlbN bound the heme weakly but nevertheless formed a cross-link between His79 Nε2 and the heme 4-Cα. In addition to this linkage, the single variant L79H GlbN also formed the native His117-2-Cα bond yielding an unprecedented bis-alkylated protein adduct. The ability to engineer the doubly modified protein indicates that the histidine-heme modification in GlbN is robust and could be engineered in different local environments. The rarity of the histidine linkage in natural proteins, despite the ease of reaction, is proposed to stem from multiple sources of negative selection.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Animales , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Procesamiento Proteico-Postraduccional , Synechocystis/química , Synechocystis/metabolismo
14.
Biochemistry ; 51(29): 5733-47, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22775272

RESUMEN

The cyanobacterium Synechococcus sp. PCC 7002 uses a hemoglobin of the truncated lineage (GlbN) in the detoxification of reactive species generated in the assimilation of nitrate. In view of a sensing or enzymatic role, several states of GlbN are of interest with respect to its structure-activity relationship. Nuclear magnetic resonance spectroscopy was applied to compare the structure and backbone dynamics of six GlbN forms differing in their oxidation state [Fe(II) or Fe(III)], distal ligand to the iron (histidine, carbon monoxide, or cyanide), or heme post-translational modification (b heme or covalently attached heme). Structural properties were assessed with pseudocontact shift calculations. (15)N relaxation data were analyzed by reduced spectral density mapping (picosecond to nanosecond motions) and by inspection of elevated R(2) values (microsecond to millisecond motions). On the picosecond to nanosecond time scale, GlbN exhibited little flexibility and was unresponsive to the differences among the various forms. Regions of slightly higher mobility were the CE turn, the EF loop, and the H-H' kink. In contrast, fluctuations on the microsecond to millisecond time scale depended on the form. Cyanide binding to the ferric state did not enhance motions, whereas reduction to the ferrous bis-histidine state resulted in elevated R(2) values for several amides. This response was attributed, at least in part, to a weakening of the distal histidine coordination. Carbon monoxide binding quenched some of these fluctuations. The results emphasized the role of the distal ligand in dictating backbone flexibility and illustrated the multiple ways in which motions are controlled by the hemoglobin fold.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Synechococcus/química , Synechococcus/metabolismo , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Monóxido de Carbono/metabolismo , Cianuros/metabolismo , Hemo/química , Hemo/metabolismo , Histidina/química , Histidina/metabolismo , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional
15.
J Biol Inorg Chem ; 17(4): 599-609, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22349976

RESUMEN

Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539-552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 10(2)-10(3) M(-1) s(-1) and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.


Asunto(s)
Electrones , Hemoglobinas/metabolismo , Procesamiento Proteico-Postraduccional , Synechococcus/química , Synechocystis/química , Hemoglobinas/química , Hemoglobinas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
16.
Chem Biodivers ; 9(9): 1703-17, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22976963

RESUMEN

The hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 (GlbN) contains three tyrosines (Tyr5, Tyr22, and Tyr53), each of which undergoes a structural rearrangement when the protein binds an exogenous ligand such as cyanide. We explored the use of 3-fluorotyrosine and (19)F-NMR spectroscopy for the characterization of GlbN. Assignment of (19)F resonances in fluorinated GlbN (GlbN*) was achieved with individual Tyr5Phe and Tyr53Phe replacements. We observed marked variations in chemical shift and linewidth reflecting the dependence of structural and dynamic properties on oxidation state, ligation state, and covalent attachment of the heme group. The isoelectronic complexes of ferric GlbN* with cyanide and ferrous GlbN* with carbon monoxide gave contrasting spectra, the latter exhibiting heterogeneity and enhanced internal motions on a microsecond-to-millisecond time scale. The strength of the H-bond network involving Tyr22 (B10) and bound cyanide was tested at high pH. 3-Fluorotyrosine at position 22 had a pK(a) value at least 3 units higher than its intrinsic value, 8.5. In addition, evidence was found for long-range communication among the tyrosine sites. These observations demonstrated the utility of the 3-fluorotyrosine approach to gain insight in hemoglobin properties.


Asunto(s)
Proteínas Bacterianas/química , Hemoglobinas/química , Espectroscopía de Resonancia Magnética , Synechococcus/química , Hemoglobinas Truncadas/química , Tirosina/análogos & derivados , Proteínas Bacterianas/metabolismo , Hemoglobinas/metabolismo , Modelos Moleculares , Synechococcus/metabolismo , Hemoglobinas Truncadas/metabolismo , Tirosina/química
17.
IUBMB Life ; 63(3): 197-205, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21445851

RESUMEN

The ε-proteobacterium Helicobacter hepaticus (Hh) contains a gene coding for a hemoglobin (Hb). The protein belongs to the 2/2 Hb lineage and is representative of group III, a set of Hbs about which little is known. An expression and purification procedure was developed for Hh Hb. Electronic absorption and nuclear magnetic resonance (NMR) spectra were used to characterize ligation states of the ferric and ferrous protein. The pK(a) of the acid/alkaline transition of ferric Hh Hb was 7.3, an unusually low value. NMR analysis of the cyanomet complex showed the orientation of the heme group to be reversed when compared with most group I and group II 2/2 Hbs. Ferrous Hh Hb formed a stable cyanide complex that yielded NMR spectra similar to those of the carbonmonoxy complex. All forms of Hh Hb were self-associated at NMR concentrations. Comparison was made to the related Campylobacter jejuni 2/2 Hb (Ctb), and the amino acid conservation pattern of group III was reinspected to help in the generalization of structure-function relationships.


Asunto(s)
Helicobacter hepaticus/química , Hemoglobinas/química , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Homología de Secuencia de Aminoácido
18.
J Biol Inorg Chem ; 16(4): 539-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21240532

RESUMEN

In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).


Asunto(s)
Hemo/química , Hemoglobinas/química , Histidina/química , Synechococcus/química , Synechocystis/química , Peróxido de Hidrógeno/química , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
19.
J Inorg Biochem ; 220: 111455, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33882423

RESUMEN

THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.


Asunto(s)
Proteínas Algáceas/metabolismo , Lisina/metabolismo , Hemoglobinas Truncadas/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Chlamydomonas reinhardtii/química , Teoría Funcional de la Densidad , Hierro/química , Hierro/metabolismo , Lisina/química , Modelos Químicos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/genética
20.
J Inorg Biochem ; 219: 111437, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33892380

RESUMEN

THB1 is a monomeric truncated hemoglobin (TrHb) found in the cytoplasm of the green alga Chlamydomonas reinhardtii. The canonical heme coordination scheme in hemoglobins is a proximal histidine ligand and an open distal site. In THB1, the latter site is occupied by Lys53, which is likely to facilitate Fe(II)/Fe(III) redox cycling but hinders dioxygen binding, two features inherent to the NO dioxygenase activity of the protein. TrHb surveys show that a lysine at a position aligning with Lys53 is an insufficient determinant of coordination, and in this study, we sought to identify factors controlling lysine affinity for the heme iron. We solved the "Lys-off" X-ray structure of THB1, represented by the cyanide adduct of the Fe(III) protein, and hypothesized that interactions that differ between the known "Lys-on" structure and the Lys-off structure participate in the control of Lys53 affinity for the heme iron. We applied an experimental approach (site-directed mutagenesis, heme modification, pH titrations in the Fe(III) and Fe(II) states) and a computational approach (MD simulations in the Fe(II) state) to assess the role of heme propionate-protein interactions, distal helix capping, and the composition of the distal pocket. All THB1 modifications resulted in a weakening of lysine affinity and affected the coupling between Lys53 proton binding and heme redox potential. The results supported the importance of specific heme peripheral interactions for the pH stability of iron coordination and the ability of the protein to undergo redox reactions.


Asunto(s)
Hemo/química , Hierro/química , Lisina/química , Hemoglobinas Truncadas/química , Chlamydomonas reinhardtii , Cristalografía por Rayos X/métodos , Compuestos Férricos/química , Hemoglobinas/química , Histidina/química , Concentración de Iones de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Oxidación-Reducción , Oxigenasas/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA