Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33758095

RESUMEN

Osteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.


Asunto(s)
Condrocitos/metabolismo , Interleucina-1alfa/metabolismo , Canales Iónicos/genética , Mecanotransducción Celular/inmunología , Osteoartritis/inmunología , Factor de Transcripción Activador 2/metabolismo , Animales , Calcio/metabolismo , Cartílago Articular/citología , Cartílago Articular/inmunología , Cartílago Articular/patología , Células Cultivadas , Condrocitos/inmunología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Osteoartritis/genética , Osteoartritis/patología , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Sus scrofa , Regulación hacia Arriba/inmunología
2.
Stem Cells ; 39(11): 1447-1456, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34427363

RESUMEN

Transient receptor potential vanilloid 4 (TRPV4) is a polymodal calcium-permeable cation channel that is highly expressed in cartilage and is sensitive to a variety of extracellular stimuli. The expression of this channel has been associated with the process of chondrogenesis in adult stem cells as well as several cell lines. Here, we used a chondrogenic reporter (Col2a1-GFP) in murine induced pluripotent stem cells (iPSCs) to examine the hypothesis that TRPV4 serves as both a marker and a regulator of chondrogenesis. Over 21 days of chondrogenesis, iPSCs showed significant increases in Trpv4 expression along with the standard chondrogenic gene markers Sox9, Acan, and Col2a1, particularly in the green fluorescent protein positive (GFP+) chondroprogenitor subpopulation. Increased gene expression for Trpv4 was also reflected by the presence of TRPV4 protein and functional Ca2+ signaling. Daily activation of TRPV4 using the specific agonist GSK1016790A resulted in significant increases in cartilaginous matrix production. An improved understanding of the role of TRPV4 in chondrogenesis may provide new insights into the development of new therapeutic approaches for diseases of cartilage, such as osteoarthritis, or channelopathies and hereditary disorders that affect cartilage during development. Harnessing the role of TRPV4 in chondrogenesis may also provide a novel approach for accelerating stem cell differentiation in functional tissue engineering of cartilage replacements for joint repair.


Asunto(s)
Condrogénesis , Células Madre Pluripotentes Inducidas , Canales Catiónicos TRPV , Animales , Cartílago/metabolismo , Diferenciación Celular , Células Cultivadas , Condrocitos , Condrogénesis/genética , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(6): 1992-1997, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30674675

RESUMEN

Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca2+) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca2+ oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca2+-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca2+ signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca2+ oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca2+ signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.


Asunto(s)
Señalización del Calcio/fisiología , Colágeno/biosíntesis , Células Madre Mesenquimatosas/metabolismo , Canales Catiónicos TRPV/metabolismo , Vinculina/metabolismo , Células de la Médula Ósea , Calcio , Uniones Célula-Matriz/metabolismo , Microambiente Celular , Matriz Extracelular , Adhesiones Focales , Humanos
4.
Proc Natl Acad Sci U S A ; 111(4): 1316-21, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474754

RESUMEN

Mechanical loading of joints plays a critical role in maintaining the health and function of articular cartilage. The mechanism(s) of chondrocyte mechanotransduction are not fully understood, but could provide important insights into new physical or pharmacologic therapies for joint diseases. Transient receptor potential vanilloid 4 (TRPV4), a Ca(2+)-permeable osmomechano-TRP channel, is highly expressed in articular chondrocytes, and loss of TRPV4 function is associated with joint arthropathy and osteoarthritis. The goal of this study was to examine the hypothesis that TRPV4 transduces dynamic compressive loading in articular chondrocytes. We first confirmed the presence of physically induced, TRPV4-dependent intracellular Ca(2+) signaling in agarose-embedded chondrocytes, and then used this model system to study the role of TRPV4 in regulating the response of chondrocytes to dynamic compression. Inhibition of TRPV4 during dynamic loading prevented acute, mechanically mediated regulation of proanabolic and anticatabolic genes, and furthermore, blocked the loading-induced enhancement of matrix accumulation and mechanical properties. Furthermore, chemical activation of TRPV4 by the agonist GSK1016790A in the absence of mechanical loading similarly enhanced anabolic and suppressed catabolic gene expression, and potently increased matrix biosynthesis and construct mechanical properties. These findings support the hypothesis that TRPV4-mediated Ca(2+) signaling plays a central role in the transduction of mechanical signals to support cartilage extracellular matrix maintenance and joint health. Moreover, these insights raise the possibility of therapeutically targeting TRPV4-mediated mechanotransduction for the treatment of diseases such as osteoarthritis, as well as to enhance matrix formation and functional properties of tissue-engineered cartilage as an alternative to bioreactor-based mechanical stimulation.


Asunto(s)
Condrocitos/metabolismo , Mecanotransducción Celular/fisiología , Canales Catiónicos TRPV/fisiología , Animales , Células Cultivadas , Condrocitos/citología , Regulación de la Expresión Génica , Sefarosa , Porcinos
5.
Proc Natl Acad Sci U S A ; 111(47): E5114-22, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25385580

RESUMEN

Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.


Asunto(s)
Cartílago Articular/fisiología , Canales Iónicos/fisiología , Estrés Mecánico , Animales , Señalización del Calcio , Condrocitos/fisiología , Canales Iónicos/genética , Ratones , ARN Interferente Pequeño
6.
FASEB J ; 28(6): 2525-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24577120

RESUMEN

Point mutations in the calcium-permeable TRPV4 ion channel have been identified as the cause of autosomal-dominant human motor neuropathies, arthropathies, and skeletal malformations of varying severity. The objective of this study was to determine the mechanism by which TRPV4 channelopathy mutations cause skeletal dysplasia. The human TRPV4(V620I) channelopathy mutation was transfected into primary porcine chondrocytes and caused significant (2.6-fold) up-regulation of follistatin (FST) expression levels. Pore altering mutations that prevent calcium influx through the channel prevented significant FST up-regulation (1.1-fold). We generated a mouse model of the TRPV4(V620I) mutation, and found significant skeletal deformities (e.g., shortening of tibiae and digits, similar to the human disease brachyolmia) and increases in Fst/TRPV4 mRNA levels (2.8-fold). FST was significantly up-regulated in primary chondrocytes transfected with 3 different dysplasia-causing TRPV4 mutations (2- to 2.3-fold), but was not affected by an arthropathy mutation (1.1-fold). Furthermore, FST-loaded microbeads decreased bone ossification in developing chick femora (6%) and tibiae (11%). FST gene and protein levels were also increased 4-fold in human chondrocytes from an individual natively expressing the TRPV4(T89I) mutation. Taken together, these data strongly support that up-regulation of FST in chondrocytes by skeletal dysplasia-inducing TRPV4 mutations contributes to disease pathogenesis.


Asunto(s)
Enfermedades del Desarrollo Óseo/embriología , Canalopatías/fisiopatología , Folistatina/fisiología , Canales Catiónicos TRPV/genética , Animales , Enfermedades del Desarrollo Óseo/genética , Embrión de Pollo , Condrocitos/metabolismo , Humanos , Ratones , Mutación , Osteocondrodisplasias , Osteogénesis/genética , Porcinos , Regulación hacia Arriba
7.
Curr Rheumatol Rep ; 16(10): 451, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25182679

RESUMEN

Articular cartilage injuries and degenerative joint diseases are responsible for progressive pain and disability in millions of people worldwide, yet there is currently no treatment available to restore full joint functionality. As the tissue functions under mechanical load, an understanding of the physiologic or pathologic effects of biomechanical factors on cartilage physiology is of particular interest. Here, we highlight studies that have measured cartilage deformation at scales ranging from the macroscale to the microscale, as well as the responses of the resident cartilage cells, chondrocytes, to mechanical loading using in vitro and in vivo approaches. From these studies, it is clear that there exists a complex interplay among mechanical, inflammatory, and biochemical factors that can either support or inhibit cartilage matrix homeostasis under normal or pathologic conditions. Understanding these interactions is an important step toward developing tissue engineering approaches and therapeutic interventions for cartilage pathologies, such as osteoarthritis.


Asunto(s)
Cartílago Articular/patología , Condrocitos/patología , Osteoartritis/patología , Humanos
8.
Arthritis Rheum ; 65(10): 2615-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23818303

RESUMEN

OBJECTIVE: Obesity is an important risk factor for osteoarthritis (OA) and is associated with changes in both the biomechanical and inflammatory environments within the joint. However, the relationship between obesity and cartilage deformation is not fully understood. The goal of this study was to determine the effects of body mass index (BMI) on the magnitude of diurnal cartilage strain in the knee. METHODS: Three-dimensional maps of knee cartilage thickness were developed from 3T magnetic resonance images of the knees of asymptomatic age- and sex-matched subjects with normal BMI (18.5-24.9 kg/m2) or high BMI (25-31 kg/m2). Site-specific magnitudes of diurnal cartilage strain were determined using aligned images recorded at 8:00 AM and 4:00 PM on the same day. RESULTS: Subjects with high BMI had significantly thicker cartilage on both the patella and femoral groove, as compared to subjects with normal BMI. Diurnal cartilage strains were dependent on location in the knee joint, as well as BMI. Subjects with high BMI, compared to those with normal BMI, exhibited significantly higher compressive strains in the tibial cartilage. Cartilage thickness on both femoral condyles decreased significantly from the AM to the PM time point; however, there was no significant effect of BMI on diurnal cartilage strain in the femur. CONCLUSION: Increased BMI is associated with increased diurnal strains in articular cartilage of both the medial and lateral compartments of the knee. The increased cartilage strains observed in individuals with high BMI may, in part, explain the elevated risk of OA associated with obesity or may reflect alterations in the cartilage mechanical properties in subjects with high BMI.


Asunto(s)
Índice de Masa Corporal , Cartílago Articular/fisiopatología , Ritmo Circadiano/fisiología , Articulación de la Rodilla/fisiopatología , Obesidad/fisiopatología , Soporte de Peso/fisiología , Cartílago Articular/patología , Estudios de Casos y Controles , Femenino , Humanos , Articulación de la Rodilla/patología , Imagen por Resonancia Magnética , Masculino , Obesidad/complicaciones , Osteoartritis de la Rodilla/epidemiología , Osteoartritis de la Rodilla/fisiopatología , Factores de Riesgo , Estrés Mecánico
9.
J Biomech Eng ; 134(10): 101005, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23083196

RESUMEN

One of the primary limitations of cell therapy for myocardial infarction is the low survival of transplanted cells, with a loss of up to 80% of cells within 3 days of delivery. The aims of this study were to investigate the distribution of nutrients and oxygen in infarcted myocardium and to quantify how macromolecular transport properties might affect cell survival. Transmural myocardial infarction was created by controlled cryoablation in pigs. At 30 days post-infarction, oxygen and metabolite levels were measured in the peripheral skeletal muscle, normal myocardium, the infarct border zone, and the infarct interior. The diffusion coefficients of fluorescein or FITC-labeled dextran (0.3-70 kD) were measured in these tissues using fluorescence recovery after photobleaching. The vascular density was measured via endogenous alkaline phosphatase staining. To examine the influence of these infarct conditions on cells therapeutically used in vivo, skeletal myoblast survival and differentiation were studied in vitro under the oxygen and glucose concentrations measured in the infarct tissue. Glucose and oxygen concentrations, along with vascular density were significantly reduced in infarct when compared to the uninjured myocardium and infarct border zone, although the degree of decrease differed. The diffusivity of molecules smaller than 40 kD was significantly higher in infarct center and border zone as compared to uninjured heart. Skeletal myoblast differentiation and survival were decreased stepwise from control to hypoxia, starvation, and ischemia conditions. Although oxygen, glucose, and vascular density were significantly reduced in infarcted myocardium, the rate of macromolecular diffusion was significantly increased, suggesting that diffusive transport may not be inhibited in infarct tissue, and thus the supply of nutrients to transplanted cells may be possible. in vitro studies mimicking infarct conditions suggest that increasing nutrients available to transplanted cells may significantly increase their ability to survive in infarct.


Asunto(s)
Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Oxígeno/metabolismo , Animales , Transporte Biológico , Muerte Celular , Diferenciación Celular , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Difusión , Glucosa/metabolismo , Ratones , Mioblastos Esqueléticos/patología , Miocardio/patología , Porcinos
10.
Biochem Biophys Res Commun ; 408(2): 230-5, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21463604

RESUMEN

Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células Cultivadas , Cromatina/química , Presión Osmótica , Porcinos
11.
Sci Rep ; 11(1): 1626, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452305

RESUMEN

Osteoarthritis is a debilitating disease characterized by cartilage degradation and altered cartilage mechanical properties. Furthermore, it is well established that obesity is a primary risk factor for osteoarthritis. The purpose of this study was to investigate the influence of obesity on the mechanical properties of murine knee cartilage. Two-month old wild type mice were fed either a normal diet or a high fat diet for 16 weeks. Atomic force microscopy-based nanoindentation was used to quantify the effective indentation modulus of medial femoral condyle cartilage. Osteoarthritis progression was graded using the OARSI system. Additionally, collagen organization was evaluated with picrosirius red staining imaged using polarized light microscopy. Significant differences between diet groups were assessed using t tests with p < 0.05. Following 16 weeks of a high fat diet, no significant differences in OARSI scoring were detected. However, we detected a significant difference in the effective indentation modulus between diet groups. The reduction in cartilage stiffness is likely the result of disrupted collagen organization in the superficial zone, as indicated by altered birefringence on polarized light microscopy. Collectively, these results suggest obesity is associated with changes in knee cartilage mechanical properties, which may be an early indicator of disease progression.


Asunto(s)
Cartílago Articular/metabolismo , Colágeno/metabolismo , Módulo de Elasticidad , Obesidad/patología , Animales , Cartílago Articular/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Obesidad/complicaciones , Obesidad/metabolismo , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Factor de Transcripción SOX9/metabolismo
12.
Biophys J ; 95(10): 4890-5, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18689460

RESUMEN

Articular cartilage is the connective tissue that lines joints and provides a smooth surface for joint motion. Because cartilage is avascular, molecular transport occurs primarily via diffusion or convection, and cartilage matrix structure and composition may affect diffusive transport. Because of the inhomogeneous compressive properties of articular cartilage, we hypothesized that compression would decrease macromolecular diffusivity and increase diffusional anisotropy in a site-specific manner that depends on local tissue strain. We used two fluorescence photobleaching methods, scanning microphotolysis and fluorescence imaging of continuous point photobleaching, to measure diffusion coefficients and diffusional anisotropy of 70 kDa dextran in cartilage during compression, and measured local tissue strain using texture correlation. For every 10% increase in normal strain, the fractional change in diffusivity decreased by 0.16 in all zones, and diffusional anisotropy increased 1.1-fold in the surface zone and 1.04-fold in the middle zone, and did not change in the deep zone. These results indicate that inhomogeneity in matrix structure and composition may significantly affect local diffusive transport in cartilage, particularly in response to mechanical loading. Our findings suggest that high strains in the surface zone significantly decrease diffusivity and increase anisotropy, which may decrease transport between cartilage and synovial fluid during compression.


Asunto(s)
Cartílago Articular/química , Cartílago Articular/fisiología , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Mecanotransducción Celular/fisiología , Animales , Fuerza Compresiva , Difusión , Técnicas In Vitro , Estrés Mecánico , Porcinos
13.
J Biomech ; 40(12): 2596-603, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17397851

RESUMEN

The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.


Asunto(s)
Cartílago Articular/citología , Condrocitos/citología , Colágeno Tipo IV , Matriz Extracelular , Imagenología Tridimensional , Modelos Biológicos , Animales , Fuerza Compresiva , Femenino , Porcinos , Soporte de Peso
14.
J Orthop Res ; 24(2): 211-9, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16435350

RESUMEN

The incidence of osteoarthritis is significantly higher in the knee as compared to the ankle, suggesting that differences in the properties of cartilage from these joints may contribute to the development of osteoarthritis. As an avascular tissue, articular cartilage depends primarily upon diffusion for molecular transport. The goal of this study was to determine if differences in the structure and composition between ankle and knee cartilage were also reflected as differences in solute transport properties. The diffusion coefficient and partition coefficient of a 70-kDa dextran molecule were measured in human ankle and knee articular cartilage using fluorescence recovery after photobleaching (FRAP) and were compared to the proteoglycan, collagen, water, and DNA contents within each zone. The mean partition coefficient was significantly lower in the ankle compared to the knee (0.010+/-0.002 vs. 0.022+/-0.003, p<0.01), but no differences in the diffusion coefficients were observed (34.6 +/- 0.9 microm(2)s(-1) vs. 35.4+/-2.4 microm(2)s(-1), p=0.70). Ankle cartilage exhibited higher proteoglycan content as well as a trend toward lower water content, suggesting that ankle cartilage has a smaller effective pore size than knee cartilage. These findings suggest that differences in the composition of ankle and knee cartilage contribute to a difference in the partition coefficient. The results of this study provide further support for the hypothesis that the transport properties of cartilage may play a role in the differences in the incidence of osteoarthritis in these joints by altering the effective concentration of growth factors and cytokines to which chondrocytes are exposed.


Asunto(s)
Articulación del Tobillo , Cartílago Articular/química , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Articulación de la Rodilla , Transporte Biológico , Cartílago Articular/citología , Condrocitos/citología , ADN/análisis , Dextranos/metabolismo , Difusión , Femenino , Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Glicosaminoglicanos/metabolismo , Humanos , Hidroxiprolina/metabolismo , Masculino , Persona de Mediana Edad
15.
Naunyn Schmiedebergs Arch Pharmacol ; 388(4): 437-50, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25519495

RESUMEN

Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.


Asunto(s)
Artropatías/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Huesos/metabolismo , Cartílago/metabolismo , Humanos , Artropatías/tratamiento farmacológico , Articulaciones/metabolismo , Dolor/metabolismo
16.
Arthritis Rheumatol ; 67(5): 1286-94, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25604429

RESUMEN

OBJECTIVE: Mechanical factors play a critical role in the physiology and pathology of articular cartilage, although the mechanisms of mechanical signal transduction are not fully understood. We undertook this study to test the hypothesis that type VI collagen is necessary for mechanotransduction in articular cartilage by determining the effects of type VI collagen knockout on the activation of the mechano-osmosensitive, calcium-permeable channel TRPV4 (transient receptor potential vanilloid channel 4) as well as on osmotically induced chondrocyte swelling and pericellular matrix (PCM) mechanical properties. METHODS: Confocal laser scanning microscopy was used to image TRPV4-mediated calcium signaling and osmotically induced cell swelling in intact femora from 2- and 9-month-old wild-type (WT) and type VI collagen-deficient (Col6a1(-/-)) mice. Immunofluorescence-guided atomic force microscopy was used to map PCM mechanical properties based on the presence of perlecan. RESULTS: Hypo-osmotic stress-induced TRPV4-mediated calcium signaling was increased in Col6a1(-/-) mice relative to WT controls at 2 months. Col6a1(-/-) mice exhibited significantly increased osmotically induced cell swelling and decreased PCM moduli relative to WT controls at both ages. CONCLUSION: In contrast to our original hypothesis, type VI collagen was not required for TRPV4-mediated Ca(2+) signaling; however, knockout of type VI collagen altered the mechanical properties of the PCM, which in turn increased the extent of cell swelling and osmotically induced TRPV4 signaling in an age-dependent manner. These findings emphasize the role of the PCM as a transducer of mechanical and physicochemical signals, and they suggest that alterations in PCM properties, as may occur with aging or osteoarthritis, can influence mechanotransduction via TRPV4 or other ion channels.


Asunto(s)
Cartílago Articular/metabolismo , Condrocitos/metabolismo , Colágeno Tipo VI/genética , Matriz Extracelular/metabolismo , Mecanotransducción Celular/genética , Presión Osmótica , Canales Catiónicos TRPV/metabolismo , Animales , Colágeno Tipo VI/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal
17.
Proc Biol Sci ; 269(1488): 215-20, 2002 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-11839189

RESUMEN

The shape of sea urchins may be determined mechanically by patterns of force analogous to those that determine the shape of a water droplet. This mechanical analogy implies skeletal flexibility at the time of growth. Although comprised of many rigid calcite plates, sutural collagenous ligaments could confer such flexibility if the sutures between plates loosened and acted as joints at the time of growth. We present experimental evidence of such flexibility associated with weight gain and growth. Over 13-, 4-, and 2-week periods, fed urchins (Strongylocentrotus droebachiensis) gained weight and developed looser sutures than unfed urchins that maintained or lost weight. Further, skeletons of fed urchins force-relaxed more than did those of unfed urchins and urchins with loose sutures force-relaxed more than those with tight sutures. Urchins (Strongylocentrotus franciscanus) fed for two and a half weeks, gained weight, also had looser skeletons and deposited calcite at sutural margins, whereas unfed ones did not. In field populations of S. droebachiensis the percentage having loose sutures varied with urchin diameter and reflected their size-specific growth rate. The association between feeding, weight gain, calcite deposition, force relaxation and sutural looseness supports the hypothesis that urchins deform flexibly while growing, thus determining their drop-like shapes.


Asunto(s)
Morfogénesis , Erizos de Mar/anatomía & histología , Erizos de Mar/crecimiento & desarrollo , Animales , Peso Corporal , Calcio/metabolismo , Carbonato de Calcio/metabolismo , Ligamentos/anatomía & histología , Docilidad , Erizos de Mar/metabolismo
18.
Biomaterials ; 25(16): 3211-22, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-14980416

RESUMEN

The differentiation and growth of adult stem cells within engineered tissue constructs are hypothesized to be influenced by cell-biomaterial interactions. In this study, we compared the chondrogenic differentiation of human adipose-derived adult stem (hADAS) cells seeded in alginate and agarose hydrogels, and porous gelatin scaffolds (Surgifoam), as well as the functional properties of tissue engineered cartilage constructs. Chondrogenic media containing transforming growth factor beta 1 significantly increased the rates of protein and proteoglycan synthesis as well as the content of DNA, sulfated glycosaminoglycans, and hydroxyproline of engineered constructs as compared to control conditions. Furthermore, chondrogenic culture conditions resulted in 86%, and 160% increases ( p < 0.05 ) in the equilibrium compressive and shear moduli of the gelatin scaffolds, although they did not affect the mechanical properties of the hydrogels over 28 days in culture. Cells encapsulated in the hydrogels exhibited a spherical cellular morphology, while cells in the gelatin scaffolds showed a more polygonal shape; however, this difference did not appear to hinder the chondrogenic differentiation of the cells. Furthermore, the equilibrium compressive and shear moduli of the gelatin scaffolds were comparable to agarose by day 28. Our results also indicated that increases in the shear moduli were significantly associated with increases in S-GAG content ( R2 = 0.36, p < 0.05 ) and with the interaction between S-GAG and hydroxyproline ( R2 = 0.34, p < 0.05 ). The findings of this study suggest that various biomaterials support the chondrogenic differentiation of hADAS cells, and that manipulating the composition of these tissue engineered constructs may have significant effects on their mechanical properties.


Asunto(s)
Tejido Adiposo/citología , Alginatos/química , Diferenciación Celular/fisiología , Condrocitos/citología , Gelatina/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Sefarosa/química , Células Madre/citología , Tejido Adiposo/fisiología , Adulto , Materiales Biocompatibles/química , Cartílago/citología , Cartílago/crecimiento & desarrollo , División Celular/fisiología , Tamaño de la Célula/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Condrocitos/fisiología , Fuerza Compresiva , Elasticidad , Matriz Extracelular/química , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Hidrogeles/química , Ensayo de Materiales , Resistencia al Corte , Células Madre/fisiología , Ingeniería de Tejidos/métodos
19.
J Biomed Mater Res B Appl Biomater ; 70(2): 397-406, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15264325

RESUMEN

Diffusion is likely to be the primary mechanism for macromolecular transport in tissue-engineered cartilage, and providing an adequate nutrient supply via diffusion may be necessary for cell proliferation and extracellular matrix production. The goal of this study was to measure the diffusivity of tissue-engineered cartilage constructs as a function of scaffold material, culture conditions, and time in culture. Diffusion coefficients of four different-sized fluorescent dextrans were measured by fluorescence recovery after photobleaching in tissue-engineered cartilage constructs seeded with human adipose-derived stem cells or acellular constructs on scaffolds of alginate, agarose, gelatin, or fibrin that were cultured for 1 or 28 days in either chondrogenic or control conditions. Diffusivities in the constructs were much greater than those of native cartilage. The diffusivity of acellular constructs increased 62% from Day 1 to Day 28, whereas diffusivity of cellular constructs decreased 42% and 27% in chondrogenic and control cultures, respectively. The decrease in diffusivity in cellular constructs is likely due to new matrix synthesis, which may be enhanced with chondrogenic media, and matrix contraction by the cells in the fibrin and gelatin scaffolds. The increase in diffusivity in the acellular constructs is probably due to scaffold degradation and swelling.


Asunto(s)
Adipocitos/citología , Cartílago/citología , Dextranos/química , Fluoresceína-5-Isotiocianato/análogos & derivados , Colorantes Fluorescentes/química , Células Madre/citología , Adulto , Alginatos/química , Células Cultivadas , Difusión , Femenino , Fibrina/química , Fluoresceína-5-Isotiocianato/química , Recuperación de Fluorescencia tras Fotoblanqueo , Gelatina/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Sefarosa/química , Factores de Tiempo , Ingeniería de Tejidos
20.
Biorheology ; 41(3-4): 389-99, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15299271

RESUMEN

Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue-engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or "stem" cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose-derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage-specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.


Asunto(s)
Adipocitos/citología , Cartílago Articular , Condrocitos , Células Madre/citología , Ingeniería de Tejidos/métodos , Adipocitos/metabolismo , Adulto , Materiales Biocompatibles , Diferenciación Celular , Humanos , Oxígeno/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA