Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22467209

RESUMEN

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Asunto(s)
Efectos de la Posición Cromosómica , Enzimas de Restricción del ADN/metabolismo , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Enzimas de Restricción del ADN/química , Marcación de Gen , Ingeniería Genética , Genoma Humano , Humanos , Mutagénesis
2.
Nat Commun ; 15(1): 4965, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862518

RESUMEN

Sickle cell disease is a devastating blood disorder that originates from a single point mutation in the HBB gene coding for hemoglobin. Here, we develop a GMP-compatible TALEN-mediated gene editing process enabling efficient HBB correction via a DNA repair template while minimizing risks associated with HBB inactivation. Comparing viral versus non-viral DNA repair template delivery in hematopoietic stem and progenitor cells in vitro, both strategies achieve comparable HBB correction and result in over 50% expression of normal adult hemoglobin in red blood cells without inducing ß-thalassemic phenotype. In an immunodeficient female mouse model, transplanted cells edited with the non-viral strategy exhibit higher engraftment and gene correction levels compared to those edited with the viral strategy. Transcriptomic analysis reveals that non-viral DNA repair template delivery mitigates P53-mediated toxicity and preserves high levels of long-term hematopoietic stem cells. This work paves the way for TALEN-based autologous gene therapy for sickle cell disease.


Asunto(s)
Anemia de Células Falciformes , Edición Génica , Terapia Genética , Células Madre Hematopoyéticas , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Anemia de Células Falciformes/terapia , Anemia de Células Falciformes/genética , Edición Génica/métodos , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Femenino , Ratones , Terapia Genética/métodos , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Trasplante de Células Madre Hematopoyéticas , Globinas beta/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Reparación del ADN , Mutación , Talasemia beta/terapia , Talasemia beta/genética , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen
3.
J Biol Chem ; 287(36): 30139-50, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22740697

RESUMEN

In this study, we asked whether CpG methylation could influence the DNA binding affinity and activity of meganucleases used for genome engineering applications. A combination of biochemical and structural approaches enabled us to demonstrate that CpG methylation decreases I-CreI DNA binding affinity and inhibits its endonuclease activity in vitro. This inhibition depends on the position of the methylated cytosine within the DNA target and was almost total when it is located inside the central tetrabase. Crystal structures of I-CreI bound to methylated cognate target DNA suggested a molecular basis for such inhibition, although the precise mechanism still has to be specified. Finally, we demonstrated that the efficacy of engineered meganucleases can be diminished by CpG methylation of the targeted endogenous site, and we proposed a rational design of the meganuclease DNA binding domain to alleviate such an effect. We conclude that although activity and sequence specificity of engineered meganucleases are crucial parameters, target DNA epigenetic modifications need to be considered for successful gene editions.


Asunto(s)
Islas de CpG , Metilación de ADN , Enzimas de Restricción del ADN/química , ADN/química , Epigénesis Genética , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Células HEK293 , Humanos , Estructura Terciaria de Proteína
4.
Biotechniques ; 39(1): 109-15, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16060375

RESUMEN

Double-strand break (DSB)-induced homologous recombination (HR) of direct repeats is a powerful means to achieve gene excision, a critical step in genome engineering. In this report we have used an extrachrmosomal reporter system to monitor the impact of different parameters on meganuclease-induced HR in CHO-K1 cells. We found that repeat homology length is critical. Virtually no HR could be detected with a 15-bp duplication, while, with repeats larger than 400 bp, recombination efficiency became less dependent on homology length. The presence of an intervening sequence between the duplications dramatically impairs HR, independent of the cleavage position; by 3 kb of insertion, HR is virtually undetectable. Efficient HR can be restored by positioning cleavage sites at both ends of the intervening sequence, allowing a constant level of excision with up to 10 kb of intervening sequences. Using similar constructs, 2.8-kb inserts could be efficiently removed from several chromosomal loci, illustrating the wide potential of this technology. These results fit current models of direct repeat recombination and identify DSB-induced HR as a powerful tool for gene excision.


Asunto(s)
Rotura Cromosómica/genética , Daño del ADN , Reparación del ADN , Ingeniería Genética/métodos , Recombinación Genética/genética , Animales , Células CHO , Cricetinae , Cricetulus , ADN de Cadena Simple
5.
Nat Commun ; 5: 3831, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24871200

RESUMEN

Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.


Asunto(s)
Biotecnología , Diatomeas/genética , Ingeniería Genética/métodos , Genoma , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Roturas del ADN de Doble Cadena , Endonucleasas/metabolismo , Citometría de Flujo , Genotipo , Lípidos/biosíntesis , Datos de Secuencia Molecular , Mutagénesis/genética , Tasa de Mutación , Espectrometría de Masas en Tándem , Transactivadores/metabolismo , Triglicéridos/análisis
6.
PLoS One ; 8(11): e78678, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236034

RESUMEN

Xeroderma pigmentosum group C (XP-C) is a rare human syndrome characterized by hypersensitivity to UV light and a dramatic predisposition to skin neoplasms. XP-C cells are deficient in the nucleotide excision repair (NER) pathway, a complex process involved in the recognition and removal of DNA lesions. Several XPC mutations have been described, including a founder mutation in North African patients involving the deletion of a TG dinucleotide (ΔTG) located in the middle of exon 9. This deletion leads to the expression of an inactive truncated XPC protein, normally involved in the first step of NER. New approaches used for gene correction are based on the ability of engineered nucleases such as Meganucleases, Zinc-Finger nucleases or TALE nucleases to accurately generate a double strand break at a specific locus and promote correction by homologous recombination through the insertion of an exogenous DNA repair matrix. Here, we describe the targeted correction of the ΔTG mutation in XP-C cells using engineered meganuclease and TALEN™. The methylated status of the XPC locus, known to inhibit both of these nuclease activities, led us to adapt our experimental design to optimize their in vivo efficacies. We show that demethylating treatment as well as the use of TALEN™ insensitive to CpG methylation enable successful correction of the ΔTG mutation. Such genetic correction leads to re-expression of the full-length XPC protein and to the recovery of NER capacity, attested by UV-C resistance of the corrected cells. Overall, we demonstrate that nuclease-based targeted approaches offer reliable and efficient strategies for gene correction.


Asunto(s)
Desoxirribonucleasas/genética , Xerodermia Pigmentosa/terapia , Secuencia de Bases , Línea Celular , División del ADN , Metilación de ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Epigénesis Genética , Terapia Genética , Humanos , Mutagénesis , Fenotipo , Ingeniería de Proteínas
7.
J Gene Med ; 8(5): 616-22, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16475243

RESUMEN

BACKGROUND: Sequence-specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000-fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double-strand break (DSB)-induced HR. METHODS: In order to investigate DSB-induced HR in toto, we have designed transgenic mouse lines carrying a LagoZ gene interrupted by one I-SceI cleavage site surrounded by two direct repeats. The LagoZ gene can be rescued upon cleavage by I-SceI and HR between the two repeats in a process called single-strand annealing. beta-Galactosidase activity is monitored in liver after tail vein injection of adenovirus expressing the meganuclease I-SceI. RESULTS: In toto staining revealed a strong dotted pattern in all animals injected with adenovirus expressing I-SceI. In contrast, no staining could be detected in the control. beta-Galactosidase activity in liver extract, tissue section staining, and PCR analysis confirmed the presence of the recombined LagoZ gene. CONCLUSIONS: We demonstrate for the first time that meganucleases can be successfully delivered in animal and induce targeted genomic recombination in mice liver in toto. These results are an essential step towards the use of designed meganucleases and show the high potential of this technology in the field of gene therapy.


Asunto(s)
Recombinación Genética , Animales , Secuencia de Bases , ADN/genética , ADN/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Genes Reporteros , Ingeniería Genética , Terapia Genética , Operón Lac , Hígado/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA