Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(20): 32126-32133, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859022

RESUMEN

We proposed a thermally-tuned distributed Bragg reflector (DBR) laser diode that has a high tuning efficiency over a wide wavelength tuning range. The laser diode is composed of a gain, a phase control (PC), and a DBR region, and its wavelength is tuned coarsely and finely by the micro-heaters on the DBR and PC regions, respectively. To improve the tuning efficiency, we developed a technique for fabricating a thermal isolation structure through a reverse mesa etching process, replacing the complex process that uses an InGaAs sacrificial layer. The DBR laser diodes (DBR-LD) fabricated using this method effectively confines heat generated by the heater, resulting in an approximate tuning range of 40 nm. This technology, which has achieved nearly four times larger wavelength tuning range than the thermally-tuned DBR-LDs without a thermal isolation structure, is considered suitable for the cost-effective development of wide-wavelength-tuning DBR-LD light sources.

2.
Opt Express ; 29(2): 1805-1812, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33726386

RESUMEN

We report a tunable distributed Bragg reflector-laser diode (DBR-LD) integrated with an electro-absorption-modulator (EAM) at an operating wavelength of 1.3 µm. This LD consists of gain, phase control (PC), DBR, and EAM sections, realized by using a butt-coupling technique in monolithically integrating the multiple quantum wells (MQWs) with the passive core and by applying an etched-mesa buried hetero-structure (EMBH) to the resonance cavity (i.e., gain to DBR section) and a deep-ridge type to the EAM section in fabricating the waveguide structure. Wavelength tuning of the LD is achieved by both applying a voltage to the heater metal of DBR section (coarse tuning) and injecting a current to the ohmic metal of PC section (fine tuning). From the work, the fabricated chips show a threshold current of about 13 mA, a side mode suppression ratio (SMSR) of more than 35 dB, and a tuning range of 15 nm within a heater voltage of 2 V. Dynamic tests for the EAM-integrated LD show the 3 dB bandwidth of more than 20 GHz and clear 25 Gb/s eye openings with a dynamic extinction ratio (DER) of over 7 dB for 16 channels spaced at the wavelength interval of 0.55 nm. Based on these results, we conclude that the EAM-integrated DBR-LD is capable of providing 16 channel operation at a data rate of 25 Gb/s and can be used as an effective light source for WDM-based mobile front-haul networks.

3.
Opt Express ; 27(20): 29241-29247, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684661

RESUMEN

We report a 1.3-µm and 10-Gbps tunable distributed Bragg reflector laser diode (DBR-LD) for the low-cost application of a wavelength division multiplex based mobile front-haul network. The device consists of gain, phase control, and DBR sections, implemented using a butt-coupling method through a monolithic integration and through the introduction of an etched mesa planar buried hetero-structure in a waveguide structure. From the work, a 560-µm long DBR-LD with a 220-µm long micro-heater DBR section has a threshold current of 10 mA ± 1 mA and a tuning range of more than 15 nm within a heater injection current of ∼100 mA. Spectral and dynamic tests for this LD show 16 channels spaced a wavelength grid of 0.8 nm with a side mode suppression ratio of greater 40 dB and clear eye openings with a dynamic extinction ratio of over 5.4 dB at an operating current of 60 mA.

4.
Opt Express ; 26(22): 28704-28712, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470043

RESUMEN

We report a novel structure that is capable of wide wavelength tuning in the distributed Bragg reflector laser diode (DBR-LD) with a single grating mirror. This device's DBR section has two tuning elements, plasma, and heater tunings, which are implemented simultaneously on the top of a single waveguide by using an in-between dielectric layer. For the proposed structure, a three-dimensional thermal simulation was conducted. The results showed that the temperature profile within the waveguide is highly affected by the position of heater metal and thermal conductivity of the p-cladding layer. As a result, it is important to use a uniform temperature region in the DBR section for a wide tuning range and stable single-mode operation. For a 550-µm long DBR-LD with a 250-µm long DBR section, a tuning range of 26 nm (i.e., 7 nm for plasma tuning and 19 nm for heater tuning); an SMSR of more than 45 dB; and a peak power variation of less than ± 2.5 dB were obtained. From the comparisons of two DBR-LDs with only one tuning element, we confirmed that using the dielectric layer is a very effective way of achieving a wide tuning under the independent tuning operation.

5.
Opt Express ; 22(19): 23694-703, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321836

RESUMEN

We report on a novel combination of measurement techniques for evaluating dimensional and compositional changes of selective-area-grown multiple-quantum-well laser diodes (SAG MQW LDs). This technique is based on C-V and I-V measurements of the fully fabricated LDs. Using this technique, the changes in the capacitance and voltage correspond to the layer thickness and bandgap energy. To verify the effectiveness of the proposed technique, we first fabricated an LD array containing ten different SAG MQW structures, and examined the effects of the dimensional and compositional changes on the wavelength shift both theoretically and experimentally. From our examination, we found that a wavelength shift of 83 nm is obtained for an SAG mask pattern with an opening width of 100 µm, and that a cross point between both dimensional and compositional changes exists for this mask pattern. As the following step, the fabricated LD array was tested using the proposed technique, and the growth rate enhancement and bandgap energy were extracted from the measured C-V and I-V results. The extracted data for each array channel were compared with the simulation results, which were well-fitted from the photo-luminescence (PL) measurements. They both show good agreement with the simulation results.


Asunto(s)
Láseres de Semiconductores , Mediciones Luminiscentes/métodos , Diseño de Equipo
6.
Opt Express ; 22(8): 9073-80, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24787795

RESUMEN

We present a ten-channel distributed feedback laser diode array (DFB-LDA) developed for the transmission of 100-Gb/s (10 × 10 Gb/s) signals separated by an 8 nm wavelength grid at a center wavelength of 1.55 µm. For the fabrication of this type of laser array, a selective area growth (SAG) technique, electron-beam lithography, and a reverse-mesa ridge waveguide LD processing technique were adopted to offer a tailored gain spectrum to each channel, providing both accurate lasing-wavelength control and excellent single-mode yield over all channels, and reducing the fabrication cost and electrical and thermal resistances. To evaluate the operational performance of the fabricated chip systematically, we also developed a sub-assembly module containing a ten-channel λ/4-shifted DFB-LDA, ten matching resistors, flexible printed circuit board (FPCB) wiring, and a thermistor on a metal optical bench. The static and dynamic properties of all channels of the fabricated array are examined in this paper. The developed sub-assembly module shows a side-mode suppression ratio (SMSR) of > 50 dB, a modulation bandwidth of > 10 GHz, and a clear eye-opening before and after a 2-km transmission with dynamic extinction ratio of > 5 dB.

7.
Opt Express ; 21(22): 26962-71, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24216919

RESUMEN

We present a cost-effective 25-Gb/s electro-absorption modulator integrated laser (EML) transmitter optical sub-assembly (TOSA) using all-in-one flexible printed circuit board (FPCB) wiring and a metal optical bench (MOB). For a low cost and high bandwidth TOSA, internal and external wirings and feed-through of the TOSA to transmit radio-frequency (RF) signal are configured all-in-one using the FPCB. The FPCB is extended from an exterior of the TOSA package up to an EML chip inside the package through the slit formed on a rear sidewall of the package and die-bonded on the MOB. The EML TOSA shows a modulated output power of more than 3.5 dBm and a clear eye pattern with a dynamic extinction ratio of ~8.4 dB at a data rate of 25.78 Gb/s.

8.
Opt Express ; 19(16): 15397-403, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934903

RESUMEN

We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-µm range.


Asunto(s)
Espectroscopía de Terahertz/métodos , Diseño de Equipo , Humanos , Rayos Láser , Láseres de Semiconductores , Luz , Ensayo de Materiales , Microscopía Electrónica de Rastreo/métodos , Semiconductores , Radiación Terahertz , Factores de Tiempo
9.
Opt Lett ; 36(16): 3094-6, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21847171

RESUMEN

The successful demonstration of an optical fiber-coupled terahertz time-domain spectroscopy (THz-TDS) system is described in this study. The terahertz output power of the emitter with two optical band rejection filters was 132 nW, which is an improvement of 70% over the output power without any filters. This improvement is due to the suppression of an optical modulated signal that is reverse-generated when an alternating current bias exceeding a certain threshold is applied to the emitter. Under the optimal alignment conditions, the terahertz detector in a fiber-coupled THz-TDS system clearly measured water vapor dips in the free space.

10.
Opt Express ; 18(12): 12291-7, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20588354

RESUMEN

We propose a widely tunable dual-wavelength Erbium-doped fiber laser that uses two micro-heater-integrated Fabry-Perot laser diodes (FP-LDs) and two fiber Bragg gratings (FBGs) for tunable continuous-wave (CW) terahertz (THz) radiation. Each wavelength can be independently tuned by using an FP-LD and an FBG. The wavelength fine tuning is achieved by simultaneously applying current to the micro-heater on the FP-LD and strain to the FBG. The side-mode suppression ratio is more than 35 dB for both wavelengths. The wavelength spacing of the dual wavelength can be continuously tuned from 3.2 nm to 9.6 nm. Continuous frequency tuning of the CW THz radiation is also successfully achieved using an InGaAs-based photomixer with our dual-wavelength fiber laser as the optical beat source. The emitted CW THz radiation is continuously tuned from 0.3 to 0.8 THz.

11.
Opt Express ; 17(16): 13851-9, 2009 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-19654791

RESUMEN

We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.


Asunto(s)
Láseres de Semiconductores , Iluminación/instrumentación , Espectroscopía de Terahertz/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Luz , Modelos Teóricos , Dispersión de Radiación , Radiación Terahertz
12.
Opt Express ; 17(25): 22838-46, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20052209

RESUMEN

We investigate theoretically and experimentally the effect of the physical length of gain medium on dynamic mode stability in semiconductor lasers with an intra-cavity filter. In simulation, two types of analysis models were used to examine the lasing properties and to analyze the dynamic mode stability of the external-cavity system, respectively. In experiment, two different kinds of the structures were fabricated and their spectra were analyzed. Both simulation and measurement results show clearly the length of the gain medium has a critical influence on the stability around the peak wavelength of the filter.


Asunto(s)
Amplificadores Electrónicos , Láseres de Semiconductores , Modelos Teóricos , Refractometría/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA