Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nanotechnology ; 33(36)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35580561

RESUMEN

Synapse devices are essential for the hardware implementation of neuromorphic computing systems. However, it is difficult to realize ideal synapse devices because of issues such as nonlinear conductance change (linearity) and a small number of conductance states (dynamic range). In this study, the correlation between the linearity and dynamic range was investigated. Consequently, we found a trade-off relationship between the linearity and dynamic range and proposed a novel training method to overcome this trade-off.

2.
Nanotechnology ; 30(3): 035203, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30422810

RESUMEN

In this research, we propose a nanoscale and embeddable subzero temperature sensor that is made with a temperature-dependent titanium-oxide based metal-insulator-transition (MIT) device. For a nanoscale two-terminal structured MIT device, the MIT device's characteristics are noticeably changed from abrupt to gradual MIT under zero temperature, which is called MIT deformation. On the basis of the MIT deformation characteristics, subzero temperatures can be detected by reading current levels as temperature changes. Furthermore, this sensor has desirable sensing properties such as high-linearity and proper sensitivity. The obtained results strongly show that titanium-oxides with CMOS process compatibility, cost-effectiveness, nontoxicity, etc, can be applied at the nanoscale and embeddable on subzero temperature sensors on a chip.

3.
Nanotechnology ; 30(30): 305202, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-30970332

RESUMEN

The origins of the nonlinear and asymmetric synaptic characteristics of TiO x -based synapse devices were investigated. Based on the origins, a microstructural electrode was utilized to improve the synaptic characteristics. Under an identical pulse bias, a TiO x -based synapse device exhibited saturated conductance changes, which led to nonlinear and asymmetric synaptic characteristics. The formation of an interfacial layer between the electrode and TiO x layer, which can limit consecutive oxygen migration and chemical reactions, was considered as the main origin of the conductance saturation behavior. To achieve consecutive oxygen migration and chemical reactions, structural engineering was utilized. The resultant microstructural electrode noticeably improved the synaptic characteristics, including the unsaturated, linear, and symmetric conductance changes. These synaptic characteristics resulted in the recognition accuracy significantly increasing from 38% to 90% in a neural network-based pattern recognition simulation.

4.
Nanotechnology ; 25(49): 495204, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25414164

RESUMEN

We have investigated the analogue memory characteristics of an oxide-based resistive-switching device under an electrical pulse to mimic biological spike-timing-dependent plasticity synapse characteristics. As a synaptic device, a TiN/Pr0.7Ca0.3MnO3-based resistive-switching device exhibiting excellent analogue memory characteristics was used to control the synaptic weight by applying various pulse amplitudes and cycles. Furthermore, potentiation and depression characteristics with the same spikes can be achieved by applying negative and positive pulses, respectively. By adopting complementary metal-oxide-semiconductor devices as neurons and TiN/PCMO devices as synapses, we implemented neuromorphic hardware that mimics associative memory characteristics in real time for the first time. Owing to their excellent scalability, resistive-switching devices, shows promise for future high-density neuromorphic applications.

5.
Nanomaterials (Basel) ; 14(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38251164

RESUMEN

A synaptic device with a multilayer structure is proposed to reduce the operating power of neuromorphic computing systems while maintaining a high-density integration. A simple metal-insulator-metal (MIM)-structured multilayer synaptic device is developed using an 8-inch wafer-based and complementary metal-oxide-semiconductor (CMOS) fabrication process. The three types of MIM-structured synaptic devices are compared to assess their effects on reducing the operating power. The obtained results exhibited low-power operation owing to the inserted layers acting as an internal resistor. The modulated operational conductance level and simple MIM structure demonstrate the feasibility of implementing both low-power operation and high-density integration in multilayer synaptic devices.

6.
Bioresour Technol ; 395: 130363, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253244

RESUMEN

Rice husk, rich carbon content, is an agricultural waste produced globally at an amount of 120 million tons annually, and it has high potential as a biorefinery feedstock. Herein, we investigated the feasibility of producing various products as D-psicose, bioethanol and lactic acid from rice husk (RH) through a biorefinery process. Alkali-hydrogen peroxide-acetic acid pretreatment of RH effectively removed lignin and silica, resulting in enzymatic hydrolysis yield of approximately 86.3% under optimal hydrolysis conditions. By using xylose isomerase as well as D-psicose-3-epimerase with borate, glucose present in the RH hydrolysate was converted into D-psicose with a 40.6% conversion yield in the presence of borate. Furthermore, bioethanol (85.4%) and lactic acid (92.5%) were successfully produced from the RH hydrolysate. This study confirmed the high potential of RH as a biorefinery feedstock, and it is expected that various platform chemicals and value-added products can be produced using RH.


Asunto(s)
Oryza , Oryza/química , Boratos , Ácido Láctico , Fructosa , Hidrólisis
7.
Biotechnol J ; 19(1): e2300309, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38180273

RESUMEN

Corynebacterium glutamicum is a useful microbe that can be used for producing succinic acid under anaerobic conditions. In this study, we generated a knock-out mutant of the lactate dehydrogenase 1 gene (ΔldhA-6) and co-expressed the succinic acid transporter (Psod:SucE- ΔldhA) using the CRISPR-Cpf1 genome editing system. The highly efficient HPAC (hydrogen peroxide and acetic acid) pretreatment method was employed for the enzymatic hydrolysis of softwood (Pinus densiflora) and subsequently utilized for production of succinic acid. Upon evaluating a 1%-5% hydrolysate concentration range, optimal succinic acid production with the ΔldhA mutant was achieved at a 4% hydrolysate concentration. This resulted in 14.82 g L-1 succinic acid production over 6 h. No production of acetic acid and lactic acid was detected during the fermentation. The co-expression transformant, [Psod:SucE-ΔldhA] produced 17.70 g L-1 succinic acid in 6 h. In the fed-batch system, 39.67 g L-1 succinic acid was produced over 48 h. During the fermentation, the strain consumed 100% and 73% of glucose and xylose, respectively. The yield of succinic acid from the sugars consumed was approximately 0.77 g succinic acid/g sugars. These results indicate that the production of succinic acid from softwood holds potential applications in alternative biochemical processes.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Ácido Succínico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Fermentación , Glucosa , Acetatos
8.
Plant Mol Biol ; 83(4-5): 317-28, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23771581

RESUMEN

Economical production of bioethanol from lignocellulosic biomass still faces many technical limitations. Cost-effective production of fermentable sugars is still not practical for large-scale production of bioethanol due to high costs of lignocellulolytic enzymes. Therefore, plant molecular farming, where plants are used as bioreactors, was developed for the mass production of cell wall degrading enzymes that will help reduce costs. Subcellular targeting is also potentially more suitable for the accumulation of recombinant cellulases. Herein, we generated transgenic tobacco plants (Nicotiana tabacum cv. SR1) that accumulated Thermotoga maritima BglB cellulase, which was driven by the alfalfa RbcsK-1A promoter and contained a small subunit of the rubisco complex transit peptide. The generated transformants possessed high specific BglB activity and did not show any abnormal phenotypes. Furthermore, we genetically engineered the RbcsK-1A promoter (MRbcsK-1A) and fused the amplification promoting sequence (aps) to MRbcsK-1A promoter to obtain high expression of BglB in transgenic plants. AMRsB plant lines with aps-MRbcsK-1A promoter showed the highest specific activity of BglB, and the accumulated BglB protein represented up to 9.3 % of total soluble protein. When BglB was expressed in Arabidopsis and tobacco plants, the maximal production capacity of recombinant BglB was 0.59 and 1.42 mg/g wet weight, respectively. These results suggests that suitable recombinant expression of cellulases in subcellular compartments such as chloroplasts will contribute to the cost-effective production of enzymes, and will serve as the solid foundation for the future commercialization of bioethanol production via plant molecular farming.


Asunto(s)
Celulasa/genética , Cloroplastos/genética , Medicago sativa/genética , Nicotiana/enzimología , Regiones Promotoras Genéticas/genética , Thermotoga maritima/enzimología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Celulasa/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Elementos de Facilitación Genéticos/genética , Expresión Génica , Ingeniería Genética , Agricultura Molecular , Datos de Secuencia Molecular , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Thermotoga maritima/genética , Nicotiana/genética , Nicotiana/ultraestructura , Transgenes
9.
Sci Rep ; 13(1): 14325, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37652919

RESUMEN

Three-terminal (3T) structured electrochemical random access memory (ECRAM) has been proposed as a synaptic device based on improved synaptic characteristics. However, the proposed 3T ECRAM has a larger area requirement than 2T synaptic devices; thereby limiting integration density. To overcome this limitation, this study presents the development of a high-density vertical structure for the 3T ECRAM. In addition, complementary metal-oxide semiconductor (CMOS)-compatible materials and 8-inch wafer-based CMOS fabrication processes were utilized to verify the feasibility of mass production. The achievements of this work demonstrate the potential for high-density integration and mass production of 3T ECRAM devices.

10.
J Exp Bot ; 63(13): 4797-810, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22798663

RESUMEN

Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed ß-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which were individually fused with chloroplast-targeting transit peptides and linked via the 2A self-cleaving oligopeptideex from foot-and-mouth disease virus (FMDV) as follows: [RsBglB-2A-RaCel5A], [RsXylII-2A-RaCel5A], and [RsE3-2A-RaCel5A]. The enzymes were targeted to chloroplasts in tobacco cells and their activities were confirmed. Similarly to the results of a transient assay using Arabidopsis thaliana protoplasts, when XylII was placed upstream of the 2A sequence, the [RsXylII-2A-RaCel5A] transgenic tobacco plant had a more positive influence on expression of the protein placed downstream. The [RsBglB-2A-RaCel5A] and [RsE3-2A-RaCel5A] transgenic lines displayed higher activities towards carboxylmethylcellulose (CMC) compared to those in the [RsXylII-2A-RaCel5A] transgenic line. This higher activity was attributable to the synergistic effects of the different cellulases used. The [RsBglB-2A-RaCel5A] lines exhibited greater efficiency (35-74% increase) of CMC hydrolysis when the exoglucanase CBHII was added. Among the various exoglucanases, E3 showed higher activity with the crude extract of the [RsBglB-2A-RaCel5A] transgenic line. Transgenic expression of 2A-mediated multiple enzymes induced synergistic effects and led to more efficient hydrolysis of lignocellulosic materials for bioethanol production.


Asunto(s)
Cloroplastos/enzimología , Lignina/metabolismo , Nicotiana/enzimología , Poliproteínas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/ultraestructura , Celulasa/genética , Celulasa/metabolismo , Celulasas/genética , Celulasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Virus de la Fiebre Aftosa/genética , Hidrólisis , Cinética , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Poliproteínas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Nicotiana/genética , Nicotiana/ultraestructura , Trichoderma/enzimología , Trichoderma/genética
11.
Nanotechnology ; 23(32): 325702, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22825561

RESUMEN

In this study, we propose a new and effective methodology for improving the resistive-switching performance of memory devices by high-pressure hydrogen annealing under ambient conditions. The reduction effect results in the uniform creation of oxygen vacancies that in turn enable forming-free operation and afford uniform switching characteristics. In addition, H(+) and mobile hydroxyl (OH(-)) ions are generated, and these induce fast switching operation due to the higher mobility compared to oxygen ions. Defect engineering, specifically, the introduction of hydrogen atom impurities, improves the device performance for metal-oxide-based resistive-switching random access memory devices.

12.
J Ind Microbiol Biotechnol ; 39(10): 1465-75, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22763748

RESUMEN

The gene of endo-beta-1-4 xylanase, xynT, was cloned from Bacillus alcalophilus AX2000 and expressed in Escherichia coli. This XynT, which belongs to glycoside hydrolase (GH) family 10, was found to have a molecular weight of approximately 37 kDa and exhibit optimal activity at pH 7-9 and 50 °C. It exhibits a high activity towards birchwood xylan and has the ability to bind avicel. Under optimal conditions, XynT hydrolyzes all xylooligomers into xylobiose as an end product with a preference for cleavage sites at the second or third glycosidic bond from the reducing end. XynT has a different substrate affinity on xylooligomers at pH 5.0, which contributes to its low activity toward xylotriose and its derived intermediate products. This low activity may be due to an unstable interaction with the amino acids that constitute subsites of the active site. Interestingly, the addition of Co(2+) and Mn(2+) led to a significant increase in activity by up to 40 and 50 %, respectively. XynT possesses a high binding affinity and hydrolytic activity toward the insoluble xylan, for which it exhibits high activity at pH 7-9, giving rise to its efficient biobleaching effect on Pinus densiflora kraft pulp.


Asunto(s)
Bacillus/enzimología , Endo-1,4-beta Xilanasas/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Detergentes/farmacología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/aislamiento & purificación , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Metales/farmacología , Datos de Secuencia Molecular , Especificidad por Sustrato , Xilanos/química , Xilanos/metabolismo
13.
J Ind Microbiol Biotechnol ; 39(7): 1081-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22395898

RESUMEN

The endoglucanase (Cel5B) from the filamentous fungus Gloeophyllum trabeum was cloned and expressed without a signal peptide, and alanine residue 22 converted to glutamine in Pichia pastoris GS115. The DNA sequence of Cel5B had an open reading frame of 1,077 bp, encoding a protein of 359 amino acid residues with a molecular weight of 47 kDa. On the basis of sequence similarity, Cel5B displayed active site residues at Glu-175 and Glu-287. Both residues lost full hydrolytic activity when replaced with alanine through point mutation. The purified recombinant Cel5B showed very high specific activity, about 80- to 1,000-fold and 13- to 70-fold in comparison with other endoglucanases and cellobiohydrolase, on carboxymethylcellulose and filter paper, respectively, at pH 3.5 and 55°C. Cel5B displayed bifunctional characteristics under acidic conditions. The kinetic properties of the enzyme determined using a Lineweaver-Burk plot indicated that Cel5B is a catalytically efficient cellulolytic enzyme. These results suggest that Cel5B has high bifunctional endo- and exoglucanase activity under acidic conditions and is a good candidate for bioconversion of lignocellulose.


Asunto(s)
Basidiomycota/enzimología , Basidiomycota/genética , Celulasa/química , Celulasa/metabolismo , Microbiología Industrial , Secuencia de Aminoácidos , Dominio Catalítico , Celulasa/genética , Celulasa/aislamiento & purificación , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Clonación Molecular , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Pichia/genética , Alineación de Secuencia
14.
Sci Rep ; 12(1): 15923, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151249

RESUMEN

For portable and transparent electronic applications, transparent supercapacitor (T-SC) is developed to act as an energy storing device. Because electric and optical characteristics of the supercapacitor are strongly dependent on its thickness, all solid state T-SC was developed based on sensitively controllable fabrication process. We were able to attain an optimum thickness for the T-SC such that it exhibited an excellent transparency as well as capacity. Thus, the transparency-capacity dilemma, that is, the thickness of a T-SC increases with respect to its capacity while it is inversely proportional to its transparency, was solved through our proposed T-SC structure. Consequently, more than 60% transparency and 80% capacitance retention of 1500 charge/discharge cycles were achieved. The overcoming of transparency-capacity dilemma can enhance the T-SC applicability as a core energy storage device.

15.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36363895

RESUMEN

A metal-insulator-metal-structured Ag-filament-based transparent threshold switch is developed as a selector device for a crossbar array, which can lead to high-density integration of advanced memory devices. Both threshold switching and rectifying behavior were achieved based on sensitive control of the filament size. Conduction mechanism analyses demonstrated that the rectifying behavior resulted from the Schottky barrier at the interface. From the threshold switching, including the rectifying behavior, the available crossbar array size is 105-times larger.

16.
Polymers (Basel) ; 14(1)2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012188

RESUMEN

Cellulase adsorption onto lignin decreases the productivity of enzymatic hydrolysis of lignocellulosic biomass. Here, adsorption of enzymes onto different types of lignin was investigated, and the five major enzymes-cellobiohydrolases (CBHs), endoglucanase (Cel7B), ß-glucosidase (Cel3A), xylanase (XYNIV), and mannanase (Man5A)-in a cellulase cocktail obtained from Trichoderma reesei were individually analyzed through SDS-PAGE and zymogram assay. Lignin was isolated from woody (oak and pine lignin) and herbaceous (rice straw and kenaf lignin) plants. The relative adsorption of CBHs compared to the control was in the range of 14.15-18.61%. The carbohydrate binding motif (CBM) of the CBHs contributed to higher adsorption levels in oak and kenaf lignin, compared to those in pine and rice lignin. The adsorption of endoglucanase (Cel7B) by herbaceous plant lignin was two times higher than that of woody lignin, whereas XYNIV showed the opposite pattern. ß-glucosidase (Cel3A) displayed the highest and lowest adsorption ratios on rice straw and kenaf lignin, respectively. Mannanase (Man5A) was found to have the lowest adsorption ratio on pine lignin. Our results showed that the hydrophobic properties of CBM and the enzyme structures are key factors in adsorption onto lignin, whereas the properties of specific lignin types indirectly affect adsorption.

17.
Micromachines (Basel) ; 13(3)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35334745

RESUMEN

To enhance the computing efficiency in a neuromorphic architecture, it is important to develop suitable memory devices that can emulate the role of biological synapses. More specifically, not only are multiple conductance states needed to be achieved in the memory but each state is also analogously adjusted by consecutive identical pulses. Recently, electrochemical random-access memory (ECRAM) has been dedicatedly designed to realize the desired synaptic characteristics. Electric-field-driven ion motion through various electrolytes enables the conductance of the ECRAM to be analogously modulated, resulting in a linear and symmetric response. Therefore, the aim of this study is to review recent advances in ECRAM technology from the material and device engineering perspectives. Since controllable mobile ions play an important role in achieving synaptic behavior, the prospect and challenges of ECRAM devices classified according to mobile ion species are discussed.

18.
Appl Environ Microbiol ; 77(10): 3343-50, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21421786

RESUMEN

Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on D-lyxose, suggesting that the enzyme is D-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn²+. The apparent K(m) values for D-lyxose and D-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (k(cat)/K(m)) for lyxose (3.2 ± 0.1 mM⁻¹ s⁻¹) was higher than that for D-mannose (1.6 mM⁻¹ s⁻¹). The purified protein was applied to the bioproduction of D-lyxose and D-glucose from d-xylose and D-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM D-lyxose and D-mannose, 3.7 mM and 3.8 mM D-lyxose and D-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.


Asunto(s)
Bacillus/enzimología , Glucosa/metabolismo , Isomerasas/metabolismo , Pentosas/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Coenzimas/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Expresión Génica , Concentración de Iones de Hidrógeno , Isomerasas/química , Isomerasas/genética , Cinética , Manganeso/metabolismo , Manosa/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Temperatura , Thermus thermophilus/enzimología , Xilosa/metabolismo
19.
Biosci Biotechnol Biochem ; 75(10): 1912-20, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21979068

RESUMEN

Experimental evidence in vivo as to the functional roles and binding properties to cadmium (Cd) of type-2 plants metallothionein (MT) has been limited thus far. We investigated the biological role of metallothionein from Colocasia esculenta (CeMT2b) in Escherichia coli and tobacco, and developed a new model for the relationship between Cd tolerance and Cd-binding ability. Heterologous expression of CeMT2b in Escherichia coli greatly enhanced Cd tolerance and accumulated Cd content as compared to control cells. The molecular weight of CeMT2b increased with Cd, and CeMT2b bound up to 5.96±1 molar ratio (Cd/protein). Under Cd stress, transgenic tobacco plants displayed much better seedling growth and high Cd accumulation than the wild type. The presence of an extra CXC motif in CeMT2b contributed to the enhanced Cd-tolerance. The present study provides the first insight into the ability of type-2 plant MT to bind physiological Cd.


Asunto(s)
Cadmio/metabolismo , Cadmio/toxicidad , Colocasia/genética , Escherichia coli/efectos de los fármacos , Metalotioneína/metabolismo , Nicotiana/efectos de los fármacos , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Quelantes/química , Quelantes/metabolismo , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/fisiología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metalotioneína/química , Metalotioneína/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Unión Proteica , Estrés Fisiológico/efectos de los fármacos , Nicotiana/citología , Nicotiana/genética , Nicotiana/metabolismo
20.
Biotechnol Biofuels ; 14(1): 37, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33549141

RESUMEN

BACKGROUND: Woody plants with high glucose content are alternative bioresources for the production of biofuels and biochemicals. Various pretreatment methods may be used to reduce the effects of retardation factors such as lignin interference and cellulose structural recalcitrance on the degradation of the lignocellulose material of woody plants. RESULTS: A hydrogen peroxide-acetic acid (HPAC) pretreatment was used to reduce the lignin content of several types of woody plants, and the effect of the cellulose structural recalcitrance on the enzymatic hydrolysis was analyzed. The cellulose structural recalcitrance and the degradation patterns of the wood fibers in the xylem tissues of Quercus acutissima (hardwood) resulted in greater retardation in the enzymatic saccharification than those in the tracheids of Pinus densiflora (softwood). In addition to the HPAC pretreatment, the application of supplementary enzymes (7.5 FPU cellulase for 24 h) further increased the hydrolysis rate of P. densiflora from 61.42 to 91.94% whereas the same effect was not observed for Q. acutissima. It was also observed that endoxylanase synergism significantly affected the hydrolysis of P. densiflora. However, this synergistic effect was lower for other supplementary enzymes. The maximum concentration of the reducing sugars produced from 10% softwood was 89.17 g L-1 after 36 h of hydrolysis with 15 FPU cellulase and other supplementary enzymes. Approximately 80 mg mL-1 of reducing sugars was produced with the addition of 7.5 FPU cellulase and other supplementary enzymes after 36 h, achieving rapid saccharification. CONCLUSION: HPAC pretreatment removed the interference of lignin, reduced structural recalcitrance of cellulose in the P. densiflora, and enabled rapid saccharification of the woody plants including a high concentration of insoluble substrates with only low amounts of cellulase. HPAC pretreatment may be a viable alternative for the cost-efficient production of biofuels or biochemicals from softwood plant tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA