Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(17): 7929-7938, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35468290

RESUMEN

The Jahn-Teller effect (JTE) is one of the most important determinators of how much stress layered cathode materials undergo during charge and discharge; however, many reports have shown that traces of superstructure exist in pristine layered materials and irreversible phase transitions occur even after eliminating the JTE. A careful consideration of the energy of cationic distortion using a Taylor expansion indicated that second-order JTE (pseudo-JTE) is more widespread than the aforementioned JTE because of the various bonding states that occur between bonding and antibonding molecular orbitals in transition-metal octahedra. As a model case, a P2-type Mn-rich cathode (Na3/4MnO2) was investigated in detail. MnO6 octahedra are well known to undergo either elongation or contraction in a specific direction due to JTE. Here, the substitution of Li for Mn (Na3/4(Li1/4Mn3/4)O2) helped to oxidize Mn3+ to Mn4+ suppressing JTE; however, the MnO6 octahedra remained asymmetric with a clear trace of the superstructure. With various advanced analyses, we disclose the pseudo-JTE as a general reason for the asymmetric distortions of the MnO6 octahedra. These distortions lead to the significant electrochemical degradation of Na3/4Li1/4Mn3/4O2. The suppression of the pseudo-JTE modulates phase transition behaviors during Na intercalation/deintercalation and thereby improves all of the electrochemical properties. The insight obtained by coupling a theoretical background for the pseudo-JTE with verified layered cathode material lattice changes implies that many previous approaches can be rationalized by regulating pseudo-JTE. This suggests that the pseudo-JTE should be thought more important than the well-known JTE for layered cathode materials.

2.
J Am Chem Soc ; 143(43): 18091-18102, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34664933

RESUMEN

The increasing demand to efficiently store and utilize the electricity from renewable energy resources in a sustainable way has boosted the request for sodium-ion battery technology due to the high abundance of sodium sources worldwide. Na superionic conductor (NASICON) structured cathodes with a robust polyanionic framework have been intriguing because of their open 3D structure and superior thermal stability. The ever-increasing demand for higher energy densities with NASICON-structured cathodes motivates us to activate multielectron reactions, thus utilizing the third sodium ion toward higher voltage and larger capacity, both of which have been the bottlenecks for commercializing sodium-ion batteries. A doping strategy with Cr inspired by first-principles calculations enables the activation of multielectron redox reactions of the redox couples V2+/V3+, V3+/V4+, and V4+/V5+, resulting in remarkably improved energy density even in comparison to the layer structured oxides and Prussian blue analogues. This work also comprehensively clarifies the role of the Cr dopant during sodium storage and the valence electron transition process of both V and Cr. Our findings highlight the importance of a broadly applicable doping strategy for achieving multielectron reactions of NASICON-type cathodes with higher energy densities in sodium-ion batteries.

3.
Angew Chem Int Ed Engl ; 59(22): 8681-8688, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32031283

RESUMEN

Redox reactions of oxygen have been considered critical in controlling the electrochemical properties of lithium-excessive layered-oxide electrodes. However, conventional electrode materials without overlithiation remain the most practical. Typically, cationic redox reactions are believed to dominate the electrochemical processes in conventional electrodes. Herein, we show unambiguous evidence of reversible anionic redox reactions in LiNi1/3 Co1/3 Mn1/3 O2 . The typical involvement of oxygen through hybridization with transition metals is discussed, as well as the intrinsic oxygen redox process at high potentials, which is 75 % reversible during initial cycling and 63 % retained after 10 cycles. Our results clarify the reaction mechanism at high potentials in conventional layered electrodes involving both cationic and anionic reactions and indicate the potential of utilizing reversible oxygen redox reactions in conventional layered oxides for high-capacity lithium-ion batteries.

5.
Angew Chem Int Ed Engl ; 55(41): 12822-6, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27624365

RESUMEN

Considering that the high capacity, long-term cycle life, and high-rate capability of anode materials for sodium-ion batteries (SIBs) is a bottleneck currently, a series of Co-doped FeS2 solid solutions with different Co contents were prepared by a facile solvothermal method, and for the first time their Na-storage properties were investigated. The optimized Co0.5 Fe0.5 S2 (Fe0.5) has discharge capacities of 0.220 Ah g(-1) after 5000 cycles at 2 A g(-1) and 0.172 Ah g(-1) even at 20 A g(-1) with compatible ether-based electrolyte in a voltage window of 0.8-2.9 V. The Fe0.5 sample transforms to layered Nax Co0.5 Fe0.5 S2 by initial activation, and the layered structure is maintained during following cycles. The redox reactions of Nax Co0.5 Fe0.5 S2 are dominated by pseudocapacitive behavior, leading to fast Na(+) insertion/extraction and durable cycle life. A Na3 V2 (PO4 )3 /Fe0.5 full cell was assembled, delivering an initial capacity of 0.340 Ah g(-1) .

6.
Adv Mater ; 36(13): e2308380, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38134206

RESUMEN

Protonation of oxide cathodes triggers surface transition metal dissolution and accelerates the performance degradation of Li-ion batteries. While strategies are developed to improve cathode material surface stability, little is known about the effects of protonation on bulk phase transitions in these cathode materials or their sodium-ion battery counterparts. Here, using NaNiO2 in electrolytes with different proton-generating levels as model systems, a holistic picture of the effect of incorporated protons is presented. Protonation of lattice oxygens stimulate transition metal migration to the alkaline layer and accelerates layered-rock-salt phase transition, which leads to bulk structure disintegration and anisotropic surface reconstruction layers formation. A cathode that undergoes severe protonation reactions attains a porous architecture corresponding to its multifold performance fade. This work reveals that interactions between electrolyte and cathode that result in protonation can dominate the structural reversibility/stability of bulk cathodes, and the insight sheds light for the development of future batteries.

7.
Front Chem ; 11: 1098460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36711236

RESUMEN

Cation-disordered rock-salt cathodes (DRX) are promising materials that could deliver high capacities (>250 mAh g-1) with Earth abundant elements and materials. However, their electrochemical performances, other than the capacity, should be improved to be competitive cathodes, and many strategies have been introduced to enhance DRXs. Fluorination has been shown to inhibit oxygen loss and increase power density. Nevertheless, fluorinated cation-disordered rock-salts still suffer from rapid material deterioration and low scalability which limit their practical applications. This mini-review highlights the key challenges for the commercialization of fluorinated cation-disordered rock-salts, discusses the underlying reasons behind material failure and proposes future development directions.

8.
Adv Sci (Weinh) ; 9(23): e2201896, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661447

RESUMEN

Activation of oxygen redox during the first cycle has been reported as the main trigger of voltage hysteresis during further cycles in high-energy-density Li-rich 3d-transition-metal layered oxides. However, it remains unclear whether hysteresis only occurs due to oxygen redox. Here, it is identified that the voltage hysteresis can highly correlate to cationic reduction during discharge in the Li-rich layered oxide, Li1.2 Ni0.4 Mn0.4 O2 . In this material, the potential region of discharge accompanied by hysteresis is apparently separated from that of discharge unrelated to hysteresis. The quantitative analysis of soft/hard X-ray absorption spectroscopies discloses that hysteresis is associated with an incomplete cationic reduction of Ni during discharge. The galvanostatic intermittent titration technique shows that the inevitable energy consumption caused by hysteresis corresponds to an overpotential of 0.3 V. The results unveil that hysteresis can also be affected by cationic redox in Li-rich layered cathodes, implying that oxygen redox cannot be the only reason for the evolution of voltage hysteresis. Therefore, appropriate control of both cationic and anionic redox of Li-rich layered oxides will allow them to reach their maximum energy density and efficiency.

9.
Nat Commun ; 12(1): 2256, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859197

RESUMEN

Layered transition-metal oxides have attracted intensive interest for cathode materials of sodium-ion batteries. However, they are hindered by the limited capacity and inferior phase transition due to the gliding of transition-metal layers upon Na+ extraction and insertion in the cathode materials. Here, we report that the large-sized K+ is riveted in the prismatic Na+ sites of P2-Na0.612K0.056MnO2 to enable more thermodynamically favorable Na+ vacancies. The Mn-O bonds are reinforced to reduce phase transition during charge and discharge. 0.901 Na+ per formula are reversibly extracted and inserted, in which only the two-phase transition of P2 ↔ P'2 occurs at low voltages. It exhibits the highest specific capacity of 240.5 mAh g-1 and energy density of 654 Wh kg-1 based on the redox of Mn3+/Mn4+, and a capacity retention of 98.2% after 100 cycles. This investigation will shed lights on the tuneable chemical environments of transition-metal oxides for advanced cathode materials and promote the development of sodium-ion batteries.

10.
Adv Mater ; 33(52): e2107141, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632654

RESUMEN

Utilizing both cationic and anionic oxygen redox reactions is regarded as an important approach to exploit high-capacity layered cathode materials with earth abundant elements. It has been popular strategies to effectively elevate the oxygen redox activities by Li-doping to introduce unhybridized O 2p orbitals in Nax MnO2 -based chemistries or enabling high covalency transition metals in P2-Na0.66 Mnx TM1- x O2 (TM = Fe, Cu, Ni) materials. Here, the effect of Li doping on regulating the oxygen redox activities P2-structured Na0.66 Ni0.25 Mn0.75 O2 materials is investigated. Systematic X-ray characterizations and ab initio simulations have shown that the doped Li has uncommon behavior in modulating the density of states of the neighboring Ni, Mn, and O, leading to the suppression of the existing oxygen and Mn redox reactivities and the promotion of the Ni redox. The findings provide a complementary scenario to current oxygen redox mechanisms and shed lights on developing new routes for high-performance cathodes.

11.
ACS Appl Mater Interfaces ; 7(50): 27934-9, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26619966

RESUMEN

Li4Ti5O12 is a promising anode material for rechargeable lithium batteries due to its well-known zero strain and superb kinetic properties. However, Li4Ti5O12 shows low energy density above 1 V vs Li(+)/Li. In order to improve the energy density of Li4Ti5O12, its low-voltage intercalation behavior beyond Li7Ti5O12 has been demonstrated. In this approach, the extended voltage window is accompanied by the decomposition of liquid electrolyte below 1 V, which would lead to an excessive formation of solid electrolyte interphase (SEI) films. We demonstrate an effective method to improve electrochemical performance of Li4Ti5O12 in a wide working voltage range by coating Li4Ti5O12 powder with p-type semiconductor NiOx. Ex situ XRD, XPS, and FTIR results show that the NiOx coating suppresses electrochemical reduction reactions of the organic SEI components to Li2CO3, thereby promoting reversibility of the charge/discharge process. The NiOx coating layer offers a stable SEI film for enhanced rate capability and cyclability.

12.
Nat Chem ; 11(8): 685-686, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31341264
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA