Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Dent Mater ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39117497

RESUMEN

OBJECTIVES: This study aimed to evaluate the effects of incorporating the 0-20 wt% tetrapod-shaped zinc oxide (tZnO) whiskers on the mechanical, antibacterial, and cytotoxic properties exhibited by experimental dual-cure resin composites. METHODS: Commercially obtained tZnO whiskers underwent surface modification using 3-methacryloxypropyltrimethoxysilane (γ-MPS). Subsequently, four groups of resin composites containing 0, 5, 10, and 20 wt% silanized tZnO along with barium borosilicate glass (BaBSG) fillers were fabricated while maintaining total filler loading at 60 wt%. Mechanical properties were examined utilizing specimens produced adhering to ISO 4049:2019 guidelines where applicable. Depth of cure was quantified immediately, while three-point flexural strength, flexural modulus, fracture toughness, Vickers hardness, compressive strength, and diametral tensile strength were assessed after 24 h of storage in 37 °C distilled water. Planktonic bacteria of Streptococcus mutans (S. mutans) were cultured and tested for antibacterial activity using disk diffusion and microbial anti-adhesion assays. Cytotoxicity was examined by preparing extracts from specimens in a cell culture medium and exposing stem cells from human exfoliated deciduous teeth (SHED) to serial dilutions of these extracts, then assessing cell viability and survival using CCK-8 assay and live/dead staining. RESULTS: Elevating tZnO loading yielded significant reductions in depth of cure, compressive (from 296.4 to 254.6 MPa), and diametral tensile strength (from 42.7 to 31.0 MPa), while flexural strength (91.3-94.1 MPa), flexural modulus (6.4-6.6 GPa), fracture toughness (0.96-1.04 MPa·m0.5), and Vickers hardness (36.5-37.4 kgf·mm-2) remained the same. Composites integrating tZnO displayed markedly enhanced antibacterial activity against S. mutans, based on anti-adhesion tests and live/dead staining. No cytotoxicity was observed for SHED treated with extracts from resin composites possessing up to 20 wt% tZnO whiskers. SIGNIFICANCE: This study demonstrates that incorporating up to 20 wt% silanized tZnO in place of traditional barium glass particles appreciably enhances dual-cure resin composite antibacterial function against S. mutans without compromising mechanical properties.

2.
Dent Mater ; 40(4): 653-663, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378372

RESUMEN

OBJECTIVE: This study aimed to compare the four-point flexural strength of CAM-milled and sintered (as-sintered, AS) specimens with those of high-polished (HP) specimens using chairside polishing systems to simulate clinical surface conditions. METHODS: Seven full-contour zirconia CAM/CAM blanks with various yttria contents (3, 4, 5 mol%) including three high-translucent groups (5Y) were selected to prepare flexural specimens. The bend bar specimens (2.0 × 4.0 × 25.0 mm3) were fabricated by using STL file and dental CAM machine with the respective zirconia blanks (98 mm ϕ and 10-14 mm in height). Twelve bar specimens were machined from one zirconia puck and a total of 24 specimens were prepared from each group. The pre-sintered bar specimens were sintered by using a dental zirconia furnace at 1530-1550 °C for 2 h according to the instructions. All sintered specimens were divided into two groups: as-sintered (AS) group and high-polished (HP) groups (n = 12). HP groups were subjected to polishing one surface of specimens using a three-step polishing system and finally finished with diamond polishing. After cleaning and drying, the flexural strength of all specimens was determined by a fully articulating four-point flexure fixture consisting of a 1/4-point test configuration with an inner/outer span of 10/20 mm. Statistical differences between AS and HP groups were conducted with Weibull analysis. The fractured surfaces of zirconia specimens were observed using a field emission SEM and EDS to detect failure origins. RESULTS: The mean AS flexural strength values were significantly lower than those of HP counterparts. However, Weibull moduli expressing the reliability of HP groups were generally decreased although not significantly in comparison to their AS. The fracture of the AS specimens mostly originated from extrinsic CAM-milling defects, while the HP specimens were fractured from intrinsic subsurface or volume defects including pores, large grain clusters, inclusions, and corner-located critical flaws. Two high-translucent (5Y) zirconia groups were not affected in their strength and reliability after polishing, whereas one 5Y zirconia significantly increased its strength but significantly lowered its reliability. SIGNIFICANCE: The extrinsic and intrinsic strength-limiting defects should be considered in evaluating the flexural strength and reliability of dental CAD/CAM zirconia ceramics for full-contour restorations. For the materials tested in this study, more optimized processing of blanks and milling protocols of pre-sintered zirconia blanks should be developed including post-sintering surface finishing to reduce the flaw population regulating strength and reliability which will affect the survivability of dental zirconia prostheses.


Asunto(s)
Cerámica , Materiales Dentales , Ensayo de Materiales , Reproducibilidad de los Resultados , Circonio , Propiedades de Superficie , Itrio
3.
Adv Sci (Weinh) ; 11(35): e2400586, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38984490

RESUMEN

Electrical conductivity is a pivotal biophysical factor for neural interfaces, though optimal values remain controversial due to challenges isolating this cue. To address this issue, conductive substrates made of carbon nanotubes and graphene oxide nanoribbons, exhibiting a spectrum of conductivities from 0.02 to 3.2 S m-1, while controlling other surface properties is designed. The focus is to ascertain whether varying conductivity in isolation has any discernable impact on neural lineage specification. Remarkably, neural-tissue-like low conductivity (0.02-0.1 S m-1) prompted neural stem/progenitor cells to exhibit a greater propensity toward neuronal lineage specification (neurons and oligodendrocytes, not astrocytes) compared to high supraphysiological conductivity (3.2 S m-1). High conductivity instigated the apoptotic process, characterized by increased apoptotic fraction and decreased neurogenic morphological features, primarily due to calcium overload. Conversely, cells exposed to physiological conductivity displayed epigenetic changes, specifically increased chromatin openness with H3acetylation (H3ac) and neurogenic-transcription-factor activation, along with a more balanced intracellular calcium response. The pharmacological inhibition of H3ac further supported the idea that such epigenetic changes might play a key role in driving neuronal specification in response to neural-tissue-like, not supraphysiological, conductive cues. These findings underscore the necessity of optimal conductivity when designing neural interfaces and scaffolds to stimulate neuronal differentiation and facilitate the repair process.


Asunto(s)
Señalización del Calcio , Conductividad Eléctrica , Epigénesis Genética , Neuronas , Epigénesis Genética/genética , Señalización del Calcio/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Diferenciación Celular/genética , Nanotubos de Carbono , Linaje de la Célula/genética , Grafito/farmacología , Ratones
4.
J Dent ; 130: 104450, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773741

RESUMEN

OBJECTIVES: To investigate the influence of thermal cycling and mechanical loading (TCML) aging on fracture resistance and wear behavior of various chairside computer-aided-designed/computer-assisted-manufactured (CAD/CAM) premolar crowns cemented on standardized tooth abutments. METHODS: Eighty chairside CAD/CAM crowns were prepared using lithium disilicate (IPS e.max CAD; EM), zirconia-infiltrated lithium silicate (Celtra Duo; CD), polymer-infiltrated ceramic network (Vita Enamic; VE), and resin nanoceramics (Cerasmart; CS) (n = 20). The specimens were divided into two groups (n = 10). In one group, they were subjected to TCML: thermocycling (6000 cycles in distilled water at 5-55 °C) and mechanical loading (50 N for 1.2 × 106 cycles), while in control group they were stored in distilled water (37 °C for 24 h). The fracture load, height loss, and volume wear of the crowns were measured after TCML. Fractography was performed on fractured specimens. Data were analyzed using analysis of variance and multiple comparison tests (α=0.05). RESULTS: The mean fracture loads of EM and CD were significantly higher than those of EC and CS (p<0.05). There was no significant change in the fracture load of any CAD/CAM crowns after TCML (p>0.05). CS exhibited a significantly higher volume wear than the other materials investigated. The wear tracts of all TCML crowns acted as failure origins during the fracture test. CONCLUSIONS: The fracture resistance of glass-ceramic CAD/CAM crowns was significantly higher than that of resin composite crowns. A 5-year TCML aging did not affect the fracture resistance of CAD/CAM crowns investigated. However, TCML treatment produces a larger wear track in CS than in other materials. CLINICAL SIGNIFICANCE: Appropriate chairside CAD/CAM restorative material should be selected for successful clinical practice after considering the fracture and wear resistance of the crowns.


Asunto(s)
Cerámica , Fracaso de la Restauración Dental , Porcelana Dental , Coronas , Materiales Dentales , Resinas Compuestas , Diseño Asistido por Computadora , Agua , Ensayo de Materiales , Análisis del Estrés Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA