Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39028694

RESUMEN

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Asunto(s)
COVID-19 , Pulmón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Organoides/virología , Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Inflamación , Citocinas/metabolismo , Apoptosis
2.
PLoS Pathog ; 17(2): e1009165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571304

RESUMEN

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Convalecencia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Adulto , Anciano , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , Chlorocebus aethiops , Clonación Molecular , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
3.
Biotechnol Bioeng ; 119(3): 963-982, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953085

RESUMEN

Chinese hamster ovary (CHO) cells are the primary host for manufacturing of therapeutic proteins. However, productivity loss is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein expression. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide variants in DNA repair genes. Comparison with primary Chinese hamster cells confirmed DNA repair to be compromised in CHO. Correction of key DNA repair genes by single-nucleotide variant reversal or expression of intact complementary DNAs successfully improved DNA repair and mitigated karyotypic instability. Moreover, overexpression of intact copies of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show that correction of DNA repair genes yields improvements in genome stability in CHO, and provide new opportunities for cell line development for sustainable protein expression.


Asunto(s)
Reparación del ADN , Inestabilidad Genómica , Animales , Células CHO , Cricetinae , Cricetulus , Reparación del ADN/genética , Inestabilidad Genómica/genética , Cariotipificación
4.
J Oncol Pharm Pract ; 28(8): 1812-1818, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34609924

RESUMEN

INTRODUCTION: The standard of care consolidation therapy for acute myeloid leukemia is high-dose cytarabine or intermediate-dose cytarabine, which are traditionally given inpatient. At Moffitt Cancer Center, we have moved the administration of high-dose cytarabine and intermediate-dose cytarabine to the outpatient setting through the inpatient/outpatient program. To facilitate outpatient administration, high-dose cytarabine and intermediate-dose cytarabine are given in a shorter interval of every 10 h instead of 12 h. The safety of a shorter duration interval of high-dose cytarabine and intermediate-dose cytarabine is unknown. This study aims to assess the safety and feasibility of administering high-dose cytarabine and intermediate-dose cytarabine consolidation therapy in the inpatient/outpatient setting. METHODS: This is a retrospective chart review to analyze acute myeloid leukemia patients treated with inpatient/outpatient high-dose cytarabine or intermediate-dose cytarabine consolidation therapy at Moffitt Cancer Center from January 1, 2015, through November 1, 2018. The primary objective was to determine the incidence of hospitalization during the inpatient/outpatient administration of high-dose cytarabine or intermediate-dose cytarabine. RESULTS: Two hundred fifty-three of 255 cycles of high-dose cytarabine/intermediate-dose cytarabine were delivered outpatient over the reviewed time period to 118 patients. No patients receiving outpatient high-dose cytarabine/intermediate-dose cytarabine consolidation required hospitalization during chemotherapy. Our incidence of hospitalization (24%) after chemotherapy is consistent with the reported literature. Through the inpatient/outpatient administration of high-dose cytarabine and intermediate-dose cytarabine, 1265 inpatient days were saved with an approximate revenue of $3,135,176 generated in our study period. CONCLUSION: Inpatient/outpatient administration of high-dose cytarabine and intermediate-dose cytarabine is both safe and feasible. Moving high-dose cytarabine/intermediate-dose cytarabine administration to the outpatient setting resulted in significant additional revenue vs. inpatient administration.


Asunto(s)
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/efectos adversos , Quimioterapia de Consolidación/métodos , Estudios Retrospectivos , Pacientes Ambulatorios , Estudios de Factibilidad , Leucemia Mieloide Aguda/inducido químicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
5.
Mol Pharm ; 18(3): 889-897, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33470823

RESUMEN

Antibody-drug conjugates (ADCs) consist of a target-specific antibody that is covalently conjugated to a drug via a linker. ADCs are designed to deliver cytotoxic drugs (payloads), specifically to cancer cells, while minimizing systemic toxicity. Conventional cysteine conjugation typically results in the formation of ADC molecules containing a heterogeneous mixture of 2, 4, 6, and 8 drug-loaded species. The drug-to-antibody ratio (DAR) of the mixture represents the weighted average of these species. In this report, we have investigated the impact of the hydrophobicity of payloads and the overall drug loading on the in vitro binding and cytotoxicity of ADC species. Several ADCs were prepared by conventional cysteine conjugation using different payloads. ADC species with different DAR values were purified from the ADC mixture and characterized by standard analytical techniques. These ADC species were evaluated for target antigen binding using an immunoassay, enzyme-linked immunosorbent assay (ELISA). The potency was assessed using a cell-based cytotoxicity assay. These structure-function studies lead to a better understanding of factors that impact the in vitro target binding and cytotoxicity of ADC species. ADC species containing hydrophobic payloads with high DAR were found to have lower target binding by ELISA compared to that of the unconjugated antibody or the heterogeneous reference ADC with DAR ∼4. Under similar assay conditions, the ADCs conjugated to hydrophilic payloads did not show a significant impact on the target binding. The cytotoxic potency of ADC species increased with increasing level of drug loading in the cell-based cytotoxicity assay.


Asunto(s)
Antígenos/química , Antineoplásicos/química , Cisteína/química , Citotoxinas/química , Inmunoconjugados/química , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Inmunoensayo/métodos
7.
Mol Microbiol ; 104(1): 179-194, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28105698

RESUMEN

Based on primary sequence comparisons and genomic context, Npun_F4153 (SigG)/Npun_F4154 (SapG) of the cyanobacterium Nostoc punctiforme were hypothesized to encode an ECF sigma factor/anti-sigma factor pair. Transcription of sigG increased in heterocysts and akinetes, and after EDTA treatment. Interaction between SigG and the predicted cytoplasmic domain of SapG was observed in vitro. A SigG-GFP translational fusion protein localized to the periphery of vegetative cells in vivo, but lost this association following heat stress. A sigG mutant was unable to survive envelope damage caused by heat or EDTA, but was able to form functional heterocysts. Akinetes in the mutant strain appeared normal, but these cultures were less resistant to lysozyme and cold treatments than those of the wild-type strain. The SigG in vivo regulon was determined before and during akinete differentiation using DNA microarray analysis, and found to include multiple genes with putative association to the cell envelope. Mapped promoters common to both arrays enabled identification of a SigG promoter-binding motif that was supported in vivo by reporter studies, and in vitro by run-off transcription experiments. These findings support SigG/SapG as a sigma/anti-sigma pair involved in repair of envelope damage resulting from exogenous sources or cellular differentiation.


Asunto(s)
Nostoc/genética , Nostoc/metabolismo , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción , Regulón/genética , Factor sigma/genética
8.
Int Psychogeriatr ; 30(1): 139-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28927472

RESUMEN

BACKGROUND: Despite recent interest in community-based screening programs to detect undiagnosed cognitive disorder, little is known about whether screening leads to further diagnostic evaluation, or the effects of such programs in terms of actual changes in patient or caregiver behavior. This study followed up informants of older adults (i.e. caregivers of patients who completed informant-based screening regarding the patient) following participation in a study screening for undiagnosed memory problems, to explore uptake of further diagnostic evaluation or treatment, advance planning or preparations, lifestyle changes, medication adherence, and use of support services. METHODS: A total of 140 informants of older adult patients were surveyed four to fifteen months following participation in a cognitive screening study. The informants were interviewed with a study-specific survey about cognitive assessment, advance planning, lifestyle changes, and use of support services and general medication adherence. RESULTS: A minority of patients and informants had engaged in advance planning or made relevant lifestyle changes following cognitive screening. Those assessed as being at higher risk of memory problems were more likely to have attended a full diagnostic evaluation, engaged in support services and experienced medication adherence difficulties. CONCLUSION: Only a small proportion of patients participating in cognitive screening subsequently engaged in diagnostic evaluation, advance planning, or lifestyle changes. However, those with higher risk of cognitive impairment were generally more likely to take some action following cognitive screening. Those at higher risk were also more vulnerable due to greater difficulties with medication adherence.


Asunto(s)
Planificación Anticipada de Atención , Disfunción Cognitiva/diagnóstico , Cumplimiento de la Medicación/psicología , Trastornos de la Memoria/diagnóstico , Anciano , Cuidadores , Cognición/fisiología , Disfunción Cognitiva/psicología , Femenino , Humanos , Estilo de Vida , Masculino , Trastornos de la Memoria/psicología , Atención Primaria de Salud , Singapur
9.
BMC Genomics ; 18(1): 78, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086803

RESUMEN

BACKGROUND: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR). Binding of TCDD to the AHR leads to changes in transcription of numerous genes. Studies evaluating the transcriptional changes brought on by TCDD may provide valuable insight into the role of the AHR in human health and disease. We therefore compiled a collection of transcriptomic datasets that can be used to aid the scientific community in better understanding the transcriptional effects of ligand-activated AHR. RESULTS: Specifically, we have created a datasets package - TCDD.Transcriptomics - for the R statistical environment, consisting of 63 unique experiments comprising 377 samples, including various combinations of 3 species (human derived cell lines, mouse and rat), 4 tissue types (liver, kidney, white adipose tissue and hypothalamus) and a wide range of TCDD exposure times and doses. These datasets have been fully standardized using consistent preprocessing and annotation packages (available as of September 14, 2015). To demonstrate the utility of this R package, a subset of "AHR-core" genes were evaluated across the included datasets. Ahrr, Nqo1 and members of the Cyp family were significantly induced following exposure to TCDD across the studies as expected while Aldh3a1 was induced specifically in rat liver. Inmt was altered only in liver tissue and primarily by rat-AHR. CONCLUSIONS: Analysis of the "AHR-core" genes demonstrates a continued need for studies surrounding the impact of AHR-activity on the transcriptome; genes believed to be consistently regulated by ligand-activated AHR show surprisingly little overlap across species and tissues. Until now, a comprehensive assessment of the transcriptome across these studies was challenging due to differences in array platforms, processing methods and annotation versions. We believe that this package, which is freely available for download ( http://labs.oicr.on.ca/boutros-lab/tcdd-transcriptomics ) will prove to be a highly beneficial resource to the scientific community evaluating the effects of TCDD exposure as well as the variety of functions of the AHR.


Asunto(s)
Contaminantes Ambientales/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Dibenzodioxinas Policloradas/farmacología , Transcriptoma , Animales , Línea Celular , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Ratones , Ratas , Programas Informáticos , Navegador Web
11.
BMC Genomics ; 16: 625, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26290441

RESUMEN

BACKGROUND: 2,3,7,8-tetrachlorodibenzo-p-dixion (TCDD) is the most potent of the dioxin congeners, capable of causing a wide range of toxic effects across numerous animal models. Previous studies have demonstrated that males and females of the same species can display divergent sensitivity phenotypes to TCDD toxicities. Although it is now clear that most TCDD-induced toxic outcomes are mediated by the aryl hydrocarbon receptor (AHR), the mechanism of differential responses to TCDD exposure between sexes remains largely unknown. To investigate the differential sensitivities in male and female mice, we profiled the hepatic transcriptomic responses 4 days following exposure to various amounts of TCDD (125, 250, 500 or 1000 µg/kg) in adult male and female C57BL/6Kuo mice. RESULTS: Several key findings were revealed by our study. 1) Hepatic transcriptomes varied significantly between the sexes at all doses examined. 2) The liver transcriptome of males was more dysregulated by TCDD than that of females. 3) The alteration of "AHR-core" genes was consistent in magnitude, regardless of sex. 4) A subset of genes demonstrated sex-dependent TCDD-induced transcriptional changes, including Fmo3 and Nr1i3, which were significantly induced in livers of male mice only. In addition, a meta-analysis was performed to contrast transcriptomic profiles of various organisms and tissues following exposure to equitoxic doses of TCDD. Minimal overlap was observed in the differences between TCDD-sensitive or TCDD-resistant models. CONCLUSIONS: Sex-dependent sensitivities to TCDD exposure are associated with a set of sex-specific TCDD-responsive genes. In addition, complex interactions between the aryl hydrocarbon and sex hormone receptors may affect the observable differences in sensitivity phenotypes between the sexes. Further work is necessary to better understand the roles of those genes altered by TCDD in a sex-dependent manner, and their association with changes to sex hormones and receptors.


Asunto(s)
Hígado/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Receptor de Androstano Constitutivo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Dibenzodioxinas Policloradas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/genética , Factores Sexuales
12.
J Cell Biochem ; 116(6): 1130-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25536521

RESUMEN

The 1,25-dihydroxyvitamin D3 (1,25D) hormone is derived from vitamin D generated in skin or obtained from the diet, and binds to and activates the vitamin D receptor (VDR) in target tissues including kidney, colon/small intestine, and bone/muscle. We tested resveratrol for its ability to modulate VDR signaling, using vitamin D responsive element (VDRE) and mammalian 2-hybrid (M2H) transcriptional system technology. Via VDRE-based assays in kidney, colon and myoblast cells, VDR-mediated transcription was activated by resveratrol, and a cooperative effect on transactivation was observed with resveratrol plus 1,25D. The M2H assay revealed a modest, resveratrol-induced dimerization of VDR with its retinoid X receptor (RXR) heteropartner. Cells treated with both resveratrol and 1,25D displayed synergistic stimulation of VDR-RXR heterodimerization, while resveratrol antagonized rexinoid-mediated RXR-RXR homodimerization. Increased transactivation in response to resveratrol was also observed with a subset of other nuclear receptors and their respective cognate responsive elements. Evaluation of wild-type versus a ligand-binding domain mutant VDR revealed that hormone-responsiveness to 1,25D was severely depressed, while the response to resveratrol was only moderately attenuated. Moreover, radiolabeled 1,25D-displacement assays demonstrated an increase in VDR-bound 1,25D in the presence of resveratrol. Thus, resveratrol may affect VDR and other nuclear receptors indirectly, likely via the ability of resveratrol to: (1) potentiate 1,25D binding to VDR; (2) activate RXR; and/or (3) stimulate SIRT1, an enzyme known to deacetylate nuclear receptors. The results of this study elucidate a possible pathway for crosstalk between two nutritionally derived lipids, vitamin D and resveratrol, both of which converge on VDR signaling.


Asunto(s)
Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Estilbenos/farmacología , Animales , Células CACO-2 , Línea Celular , Células HCT116 , Humanos , Ratones , Unión Proteica/efectos de los fármacos , Receptores de Calcitriol/genética , Receptores Citoplasmáticos y Nucleares/genética , Resveratrol , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Transducción de Señal/efectos de los fármacos , Elemento de Respuesta a la Vitamina D/genética , Elemento de Respuesta a la Vitamina D/fisiología
13.
Toxicol Appl Pharmacol ; 284(2): 188-96, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25703434

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500µg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear.


Asunto(s)
Dibenzodioxinas Policloradas/toxicidad , Proteoma/efectos de los fármacos , Proteoma/genética , Transcripción Genética/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Receptor de Androstano Constitutivo , Contaminantes Ambientales/toxicidad , Femenino , Cobayas , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Factores Sexuales , Factores de Transcripción/genética
14.
J Pharmacol Exp Ther ; 348(1): 165-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24218541

RESUMEN

A critical piece in the translation of preclinical studies to clinical trials is the determination of dosing regimens that allow maximum therapeutic benefit with minimum toxicity. The preclinical pharmacokinetic (PK)/pharmacodynamic (PD) profile of tofacitinib, an oral Janus kinase (JAK) inhibitor, in a mouse collagen-induced arthritis (mCIA) model was compared with clinical PK/PD data from patients with rheumatoid arthritis (RA). Preclinical evaluations included target modulation and PK/PD modeling based on continuous subcutaneous infusion or oral once- or twice-daily (BID) dosing paradigms in mice. The human PK/PD profile was obtained from pooled data from four phase 2 studies in patients with RA, and maximal effect models were used to evaluate efficacy after 12 weeks of tofacitinib treatment (1-15 mg BID). In mCIA, the main driver of efficacy was inhibition of cytokine receptor signaling mediated by JAK1 heterodimers, but not JAK2 homodimers, and continuous daily inhibition was not required to maintain efficacy. Projected efficacy could be predicted from total daily exposure irrespective of the oral dosing paradigm, with a total steady-state plasma concentration achieving 50% of the maximal response (Cave50) of ~100 nM. Tofacitinib potency (ED50) in clinical studies was ~3.5 mg BID (90% confidence interval: 2.3, 5.5) or total Cave50 of ~40 nM, derived using Disease Activity Scores from patients with RA. The collective clinical and preclinical data indicated the importance of Cave as a driver of efficacy, rather than maximum or minimum plasma concentration (Cmax or Cmin), where Cave50 values were within ~2-fold of each other.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Janus Quinasa 1/antagonistas & inhibidores , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Animales , Artritis Experimental/enzimología , Método Doble Ciego , Evaluación Preclínica de Medicamentos/métodos , Humanos , Janus Quinasa 1/metabolismo , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/fisiología , Masculino , Ratones , Ratones Endogámicos DBA , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico
15.
JID Innov ; 4(3): 100269, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38766490

RESUMEN

Staphylococcus aureus (SA) colonizes and can damage skin in atopic dermatitis lesions, despite being commonly found with Staphylococcus epidermidis (SE), a commensal that can inhibit SA's virulence and kill SA. In this study, we developed an in silico model, termed a virtual skin site, describing the dynamic interplay between SA, SE, and the skin barrier in atopic dermatitis lesions to investigate the mechanisms driving skin damage by SA and SE. We generated 106 virtual skin sites by varying model parameters to represent different skin physiologies and bacterial properties. In silico analysis revealed that virtual skin sites with no skin damage in the model were characterized by parameters representing stronger SA and SE growth attenuation than those with skin damage. This inspired an in silico treatment strategy combining SA-killing with an enhanced SA-SE growth attenuation, which was found through simulations to recover many more damaged virtual skin sites to a non-damaged state, compared with SA-killing alone. This study demonstrates that in silico modelling can help elucidate the key factors driving skin damage caused by SA-SE colonization in atopic dermatitis lesions and help propose strategies to control it, which we envision will contribute to the design of promising treatments for clinical studies.

16.
Commun Biol ; 7(1): 570, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750146

RESUMEN

Gastrointestinal (GI) disruptions and inflammatory bowel disease (IBD) are commonly associated with Parkinson's disease (PD), but how they may impact risk for PD remains poorly understood. Herein, we provide evidence that prodromal intestinal inflammation expedites and exacerbates PD endophenotypes in rodent carriers of the human PD risk allele LRRK2 G2019S in a sex-dependent manner. Chronic intestinal damage in genetically predisposed male mice promotes α-synuclein aggregation in the substantia nigra, loss of dopaminergic neurons and motor impairment. This male bias is preserved in gonadectomized males, and similarly conferred by sex chromosomal complement in gonadal females expressing human LRRK2 G2019S. The early onset and heightened severity of neuropathological and behavioral outcomes in male LRRK2 G2019S mice is preceded by increases in α-synuclein in the colon, α-synuclein-positive macrophages in the colonic lamina propria, and loads of phosphorylated α-synuclein within microglia in the substantia nigra. Taken together, these data reveal that prodromal intestinal inflammation promotes the pathogenesis of PD endophenotypes in male carriers of LRRK2 G2019S, through mechanisms that depend on genotypic sex and involve early accumulation of α-synuclein in myeloid cells within the gut.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratones , Masculino , Femenino , Endofenotipos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Síntomas Prodrómicos , Modelos Animales de Enfermedad , Ratones Transgénicos , Humanos , Factores Sexuales , Inflamación/metabolismo , Inflamación/genética , Ratones Endogámicos C57BL , Caracteres Sexuales
17.
Front Public Health ; 12: 1408222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005996

RESUMEN

Understanding the health outcomes of military exposures is of critical importance for Veterans, their health care team, and national leaders. Approximately 43% of Veterans report military exposure concerns to their VA providers. Understanding the causal influences of environmental exposures on health is a complex exposure science task and often requires interpreting multiple data sources; particularly when exposure pathways and multi-exposure interactions are ill-defined, as is the case for complex and emerging military service exposures. Thus, there is a need to standardize clinically meaningful exposure metrics from different data sources to guide clinicians and researchers with a consistent model for investigating and communicating exposure risk profiles. The Linked Exposures Across Databases (LEAD) framework provides a unifying model for characterizing exposures from different exposure databases with a focus on providing clinically relevant exposure metrics. Application of LEAD is demonstrated through comparison of different military exposure data sources: Veteran Military Occupational and Environmental Exposure Assessment Tool (VMOAT), Individual Longitudinal Exposure Record (ILER) database, and a military incident report database, the Explosive Ordnance Disposal Information Management System (EODIMS). This cohesive method for evaluating military exposures leverages established information with new sources of data and has the potential to influence how military exposure data is integrated into exposure health care and investigational models.


Asunto(s)
Bases de Datos Factuales , Exposición a Riesgos Ambientales , Personal Militar , Humanos , Personal Militar/estadística & datos numéricos , Veteranos/estadística & datos numéricos , Elementos de Datos Comunes , Exposición Profesional , Estados Unidos
18.
bioRxiv ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-39026690

RESUMEN

Noncoding RNAs (ncRNAs) are increasingly recognized as bioactive. Here we report the development of TY1, a synthetic ncRNA bioinspired by a naturally-occurring human small Y RNA with immunomodulatory properties. TY1 upregulates TREX1, an exonuclease that rapidly degrades cytosolic DNA. In preclinical models of myocardial infarction (MI) induced by ischemia/reperfusion, TY1 reduced scar size. The cardioprotective effect of TY1 was abrogated by prior depletion of macrophages and mimicked by adoptive transfer of macrophages exposed either to TY1 or TREX1. Inhibition of TREX1 in macrophages blocked TY1 cardioprotection. Consistent with a central role for TREX1, TY1 attenuated DNA damage in the post-MI heart. This novel mechanism-pharmacologic upregulation of TREX1 in macrophages-establishes TY1 as the prototype for a new class of ncRNA drugs with disease-modifying bioactivity. One Sentence Summary: Upregulation of three prime exonuclease, TREX1, in macrophages enhances tissue repair post myocardial infarction.

19.
Bioorg Med Chem ; 21(3): 693-702, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23276449

RESUMEN

This report describes the synthesis of analogs of curcumin, and their analysis in acting as nuclear receptor specific agonists. Curcumin (CM), a turmeric-derived bioactive polyphenol found in curry, has recently been identified as a ligand for the vitamin D receptor (VDR), and it is possible that CM exerts some of its bioeffects via direct binding to VDR and/or other proteins in the nuclear receptor superfamily. Using mammalian-two-hybrid (M2H) and vitamin D responsive element (VDRE) biological assay systems, we tested CM and 11 CM synthetic analogs for their ability to activate VDR signaling. The M2H assay revealed that RXR and VDR association was induced by CM and several of its analogs. VDRE-based assays demonstrated that pure curcumin and eight CM analogs activated transcription of a luciferase plasmid at levels approaching that of the endocrine 1,25 dihydroxyvitamin D(3) (1,25D) ligand in human colon cancer cells (HCT-116). Additional experiments were performed in HCT-116 utilizing various nuclear receptors and hormone responsive elements to determine the receptor specificity of curcumin binding. CM did not appear to activate transcription in a glucocorticoid responsive system. However, CM along with several analogs elicited transcriptional activation in retinoic acid and retinoid X receptor (RXR) responsive systems. M2H assays using RXR-RXR, VDR-SRC1 and VDR-DRIP revealed that CM and select analogs stimulate RXR homodimerization and VDR-coactivator interactions. These studies may lead to the discovery of novel curcumin analogs that activate nuclear receptors, including RXR, RAR and VDR, resulting in similar health benefits as those for vitamins A and D, such as lowering the risk of epithelial and colon cancers.


Asunto(s)
Curcumina/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Curcumina/síntesis química , Curcumina/química , Células HCT116 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
J Immunol ; 186(7): 4234-43, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21383241

RESUMEN

Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-ß. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.


Asunto(s)
Inmunidad Adaptativa , Artritis Experimental/inmunología , Proteínas Aviares/toxicidad , Colágeno Tipo II/toxicidad , Inmunidad Innata , Pirimidinas/administración & dosificación , Pirroles/administración & dosificación , Inmunidad Adaptativa/genética , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/enzimología , Células Cultivadas , Pollos , Humanos , Inmunidad Innata/genética , Janus Quinasa 3/antagonistas & inhibidores , Janus Quinasa 3/deficiencia , Janus Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Piperidinas , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Pirroles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA