Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040136

RESUMEN

Tumor necrosis factor (TNF) is an important cytokine involved in immune responses to bacterial infections in vertebrates, including fish. Although Tnf-α is a well-studied cytokine, there are contradictory findings about Tnf-α function following bacterial infection. In this study, we analyzed the expression and function of the Tnf-α-type I isoform (Tnf-α1) in zebrafish by knockout experiments using the CRISPR/Cas9 gene-editing tool. The open reading frame of tnf-α1 encodes a 25.82 kDa protein with 234 amino acids (aa). The expression of tnf-α1 in the early stages of zebrafish was observed from the 2-cell stage. Adult zebrafish spleens showed the highest expression of tnf-α1. To evaluate the function of Tnf-α1, an 8 bp deletion in the target region, resulting in a short truncated protein of 55 aa, was used to create the tnf-α1 knockout mutant. The pattern of downstream gene expression in 7-day larvae in wild-type (WT) and tnf-α1 knockout fish was examined. We also verified the fish mortality rate after Edwardsiella piscicida challenge and found that it was much higher in tnf-α1 knockout fish than in WT fish. Additionally, downstream gene expression analyses after E. piscicida exposure revealed a distinct expression pattern in tnf-α1 knockout fish compared to that in WT fish. Overall, our study using tnf-α1 deletion in zebrafish confirmed that Tnf-α1 is critical for immune regulation during bacterial infection.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Resistencia a la Enfermedad/genética , Pez Cebra , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Sistemas CRISPR-Cas , Edwardsiella/fisiología , Citocinas/genética , Proteínas Bacterianas/genética
2.
Fish Shellfish Immunol ; 146: 109434, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331055

RESUMEN

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family of adaptor proteins involved in the signal transduction pathways of both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. In this study, red-spotted grouper (Epinephelus akaara) TRAF6 (EaTraf6) was identified and characterized. The open reading frame of EaTraf6, 1713 bp in length, encodes a putative protein of 570 amino acids and has a predicted molecular weight and theoretical isoelectric point of 64.11 kDa and 6.07, respectively. EaTraf6 protein contains an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled-coil region (zf-TRAF), and a conserved C-terminal meprin and TRAF homology (MATH) domain. EaTraf6 shared the highest amino acid sequence identity with its ortholog from Epinephelus coioides, and phylogenetic analysis showed all fish TRAF6s clustered together and apart from other species. qRT-PCR results revealed that EaTraf6 was ubiquitously expressed in all examined tissues, with the highest level detected in the blood. In the immune challenge, EaTraf6 exhibited modulated mRNA expression levels in the blood and spleen. The subcellular localization analysis revealed that the EaTraf6 protein was predominantly present in the cytoplasm; however, it could translocate into the nucleus following poly (I:C) stimulation. The antiviral function of EaTraf6 was confirmed by analyzing the expression of host antiviral genes and viral genomic RNA during viral hemorrhagic septicemia virus infection. Additionally, luciferase reporter assay results indicated that EaTraf6 is involved in the activation of the NF-κB signaling pathway upon poly (I:C) stimulation. Finally, the effect of EaTraf6 on cytokine gene expression and its role in regulating macrophage M1 polarization were demonstrated. Collectively, these findings suggest that EaTraf6 is a crucial immune-related gene that significantly contributes to antiviral functions and regulation of NF-κB activity in the red-spotted grouper.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , Factor 6 Asociado a Receptor de TNF , FN-kappa B/genética , FN-kappa B/metabolismo , Filogenia , Transducción de Señal , Proteínas de Peces/química , Inmunidad Innata/genética
3.
Fish Shellfish Immunol ; 146: 109365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199263

RESUMEN

DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.


Asunto(s)
FN-kappa B , Perciformes , Animales , FN-kappa B/genética , Filogenia , ARN Helicasas DEAD-box , Inmunidad Innata/genética , Perciformes/metabolismo , Macrófagos/metabolismo , Antivirales , Poli I , Proteínas de Peces , Mamíferos/metabolismo
4.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777254

RESUMEN

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Asunto(s)
Gastrópodos , Inmunidad Innata , Metalotioneína , Novirhabdovirus , Estrés Oxidativo , Vibrio parahaemolyticus , Animales , Metalotioneína/genética , Metalotioneína/inmunología , Gastrópodos/inmunología , Gastrópodos/genética , Gastrópodos/microbiología , Estrés Oxidativo/efectos de los fármacos , Vibrio parahaemolyticus/fisiología , Inmunidad Innata/genética , Novirhabdovirus/fisiología , Regulación de la Expresión Génica/inmunología , Secuencia de Aminoácidos , Filogenia , Alineación de Secuencia/veterinaria , Listeria monocytogenes/fisiología , Listeria monocytogenes/inmunología , Ratones , Perfilación de la Expresión Génica/veterinaria , Células RAW 264.7 , Metales Pesados/toxicidad , Contaminantes Químicos del Agua
5.
J Fish Dis ; 47(1): e13865, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731267

RESUMEN

Enteromyxum leei and Enteromyxum fugu, which are myxosporean parasites, were first found in cultured tiger puffer Takifugu rubripes in Korea. We collected four tiger puffers that showed severe emaciation signs for our experiments. DNA sequencing was confirmed that the tiger puffers were coinfected with E. leei and E. fugu. Furthermore, similar amounts of E. leei and E. fugu were confirmed using real-time PCR in the intestine. To the best of our knowledge, there have been no reports of E. fugu infection in the olive flounder Paralichthys olivaceus. However, the diagnosis of inflowing water, discharged water and olive flounder samples using highly sensitive diagnostic methods confirmed the presence of E. fugu in water and fish samples from olive flounder farms near the tiger puffer farm. Therefore, the present study aimed to develop highly sensitive diagnostic methods such as real-time and two-step PCR for early diagnosis and follow-up of the emaciation disease and multiplex PCR for rapid diagnosis. The multiplex PCR method exhibited the same sensitivity as the one-step PCR method developed in this study, demonstrating its efficacy for rapid diagnosis. Therefore, the suggested methods can be utilized for the early diagnosis and rapid diagnosis of emaciation diseases and reduction of economic losses through rapid disease control.


Asunto(s)
Enfermedades de los Peces , Lenguado , Myxozoa , Animales , Takifugu , Emaciación , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/parasitología , Lenguado/parasitología , Myxozoa/genética , República de Corea , Agua
6.
Fish Shellfish Immunol ; 133: 108551, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36646340

RESUMEN

Galectins are a family of lectins that are widely distributed ß-galactoside-binding proteins identified in diverse organisms. Galectin family have appeared as pattern recognition receptors (PRRs) responsible for initiating and controlling the innate immunity. The present study aimed to study the binding ability and potential role in PRRs of galectin-related protein B-like (LhGal B-like) from redlip mullet (Liza haematocheila) involved in the host immune responses. We constructed a cDNA library of redlip mullet and identified the LhGal B-like sequence. By sequence analysis and multiple sequence alignment, we revealed that LhGal B-like contains a conserved carbohydrate recognition domain (CRD) and consists of 135 amino acids with a predicted molecular weight of 16.07 kDa. In addition, pairwise comparison results showed that LhGal B-like shares higher sequence identity (82.2-95.2%) and similarity (89-95.9%) with fish species than those (34.1-37.8% and 57.2-58.1%, respectively) with other species. The phylogenetic tree showed that LhGal B-like clustered into the fish group and was evolutionally related to Mastacembelus armatus. The tissue distribution results revealed that LhGal B-like was expressed ubiquitously in all the tested tissues, where it was highly expressed in the brain, followed by gills and muscle. The immune modulated expression of LhGal B-like was observed by injecting lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). According to the results, in the gills, the mRNA expression of LhGal B-like was significantly upregulated upon LPS treatment after 48 h and upon poly I:C treatment after 48 and 72 h. In addition, the result showed significant upregulations upon LPS and poly I:C treatment after 24 h. However, significant downregulation was also shown in the earlier phase after injection of poly I:C and L. garvieae in gills. Further, the binding affinity of recombinant LhGal B-like (rLhGal B-like) was evaluated using carbohydrate, pathogen-associated molecular patterns (PAMP) and bacterial binding assays. The rLhGal B-like could bind all the examined carbohydrates but had a higher affinity to α-lactose. PAMPs and bacterial binding experiments verified a wide range of PAMP molecules and bacterial strains that rLhGal B-like could bind to. Moreover, we examined the agglutination activity of rLhGal B-like, and the result showed that it could aggregate all the gram-positive and gram-negative bacteria. Taken together, our findings reveal the functional aspects of LhGal B-like as a PRR and the potential involvement of LhGal B-like in the innate immunity of redlip mullet.


Asunto(s)
Proteínas de Peces , Smegmamorpha , Animales , Regulación de la Expresión Génica , Filogenia , Lipopolisacáridos/farmacología , Antibacterianos , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Bacterias Gramnegativas , Bacterias Grampositivas , Smegmamorpha/genética , Peces , Inmunidad Innata/genética , Galectinas , Receptores de Reconocimiento de Patrones/genética , Poli I
7.
Fish Shellfish Immunol ; 143: 109186, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884106

RESUMEN

The TRAF family member-associated nuclear factor kappa B (NF-κB) activator (TANK) regulates the NF-κB activation through the TRAF-mediated signaling pathway and is involved in the antiviral pathway by inducing the interferon (IFN) production. In the present study, we identified a TANK ortholog from the red-spotted grouper (Epinephelus akaara) and analyzed its immunological functions. The coding sequence of EaTANK consists of 1047 base pairs and encodes a 348 amino acids protein. The predicted molecular weight and theoretical isoelectric point (pI) were 38.92 kDa and 5.39, respectively. According to the phylogenetic analysis, EaTANK was closely clustered with fish TANK orthologs, exhibiting the highest identity (97.1 %) and similarity (97.1 %) to that of Epinephelus lanceolatus. A highly conserved TBK1/IKKi binding domain (TBD) was identified between 110 and 164 residues. Our tissue distribution analysis showed that EaTANK mRNA was ubiquitously expressed in 12 tested tissues, with the highest expression in the spleen and peripheral blood cells (PBCs). According to the immune challenge experiments, EaTANK mRNA expression in PBCs was significantly elevated following stimulation with polyinosinic:polycytidylic acid [poly (I:C)], lipopolysaccharide (LPS), or nervous necrosis virus (NNV). We also observed a significant elevation in the mRNA expression of downstream antiviral pathway-related genes (ISG15, IRF3, and IRF7) in EaTANK-overexpressing fathead minnow (FHM) cells against poly (I:C) stimulation. Moreover, the replication of 6 genes in the VHSV genome was inhibited by the overexpression of EaTANK. Finally, we confirmed that the expression of NFKB1 mRNA and promoter binding activity of NF-κB was significantly increased in poly (I:C)-stimulated EaTANK-overexpressing FHM cells. In conclusion, the results of this study suggest that TANK significantly contributes to the antiviral response and regulation of NF-κB activity in red-spotted grouper.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Inmunidad Innata/genética , Regulación de la Expresión Génica , Filogenia , Secuencia de Aminoácidos , ARN Mensajero/metabolismo , Antivirales , Proteínas de Peces/química
8.
Fish Shellfish Immunol ; 142: 109159, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832746

RESUMEN

Miamiensis avidus is a parasitic pathogen that causes scuticociliatosis, a severe and often lethal marine infection that affects marine fishes worldwide, including olive flounder (Paralichthys olivaceus) in Korea. This parasite infects all size groups of flounder year-round, causing recurring mortalities and huge economic losses to the Korean flounder industry each year. However, few efforts have been made to implement effective remedial measures to control this parasite. Therefore, our study sought to develop a chitosan microsphere (MS)-encapsulated inactivated vaccine (IMa + chitosan) for oral delivery (adsorbed in feed) to flounder fingerlings and assess its protective efficacy at different modalities via three in vivo experimental trials. Immunisation trial-1 was conducted to determine the effective concentration of chitosan. Our findings indicated that an IMa + chitosan 0.05 % vaccine formulation was safe and effective in providing moderate protection [46.67%-53.3 % relative percent survival (RPS)] against M. avidus intraperitoneal (IP) injection challenge at two weeks post-vaccination (wpv) compared to the IMa + chitosan 0.01 % and IMa + chitosan 0.005 % vaccines (0%-13.3 % RPS) irrespective of the antigen doses. In trial-2, the IMa + chitosan 0.05 % vaccine elicited similar protective immunity (30.8%-57.1 % RPS) in olive flounder against M. avidus at varying antigen doses (high: 2.38 × 106 cells/fish; low: 1.5 × 105 cells/fish), immunisation periods (2 and 5 wpv), and challenge modes (IP injection and immersion). Furthermore, experimental trial-3 validated the use of chitosan MS as an IMa antigen carrier to improve survivability (41.7 % RPS) in the host by significantly (p < 0.05) upregulating specific anti-M. avidus antibody titres in the fish sera and mucus of the group immunised with IMa-containing chitosan MS. In contrast, non-specific immunomodulatory effects (16.7 % RPS and enhanced mucosal antibody titres) were observed in the group treated with chitosan MS without IMa. Therefore, our findings suggested that oral administration of chitosan MS (0.05 %)-encapsulated IMa vaccine is a promising immunisation strategy against M. avidus that can protect the IMa antigen from digestive degradation, facilitates its targeted delivery to the host immune organs, and helps in orchestrating protective immune induction in olive flounder, thus controlling parasite infection.


Asunto(s)
Quitosano , Enfermedades de los Peces , Lenguado , Oligohimenóforos , Parásitos , Animales , Enfermedades de los Peces/parasitología , Microesferas , Vacunas de Productos Inactivados
9.
Fish Shellfish Immunol ; 141: 109006, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37598733

RESUMEN

Myeloid differentiation primary response protein-88 (MYD88) is an essential adaptor molecule in pathogen-related pattern recognition signaling pathways. Toll-like and interleukin receptors recognize numerous signals and are funneled through MyD88 to express genes responsible for the innate and adaptive immune systems. In the present study, the relevance of MyD88 in viral hemorrhagic septicemia virus (VHSV) was investigated by generating myd88-/- zebrafish. The model was challenged with VHSV, and viral propagation was quantified by evaluating clinical symptoms, mortality, and VHSV copy number. The infected fish showed abnormal morphologies, such as subcutaneous hemorrhages, abdominal swelling, and bulging eyes, which were comparatively more intense in myd88-/- fish than in the wild-type. An injury infection experiment conducted in zebrafish larvae indicated a substantial spread of VHSV in the wound site. The number of neutrophils and macrophages recruited to the wounded area were markedly reduced in myd88-/- fish. According to gene expression analysis, VHSV NP gene expression was considerably upregulated in myd88-/- fish. Substantial gene expression and immune cell marker modulation were observed in the mutant model compared to that in the wild-type. These results suggest that the lack of a significant adaptor protein for immune signal transduction results in enhanced VHSV replication.

10.
Fish Shellfish Immunol ; 132: 108490, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509415

RESUMEN

Beclin-1, the mammalian ortholog of the yeast autophagy-related gene 6 (Atg 6), is a key regulator of autophagy. A variety of health and disease conditions in mammals are intricately related to the broad spectrum of beclin-1 functions. Nevertheless, few studies have investigated the role of beclin-1 in fish. In this study, we identified and cloned the beclin-1 cDNA (EaBECN-1) of Epinephelus akaara (red-spotted grouper) and carried out in silico analysis, tissue-specific expression analysis, immune challenge experiment, and in vitro analysis of its roles against viral infection and oxidative stress. The open reading frame was 1344 bp long and encoded 447 amino acids with a molecular weight of 51.2 kDa. Beclin-1 consisted of a conserved N-terminal BH3 and APG6 domains, and shared more than 88% identity with other vertebrates, according to a pairwise sequence alignment. EaBECN-1 expression profile analysis in E. akaara revealed that it is mostly expressed in the blood. Moreover, transcriptional modulation of EaBECN-1 was observed following stimulation with lipopolysaccharide (LPS), polyinosinic-polycytidylic acid (poly (I:C)), and nervous necrosis virus. During the viral hemorrhagic septicemia virus challenge, increased viral gene expression was observed at 12 h post-infection in FHM cells ectopically expressing EaBECN-1, and decreased thereafter at 24 h post-infection compared to control cells. However, increased antiviral gene expression at 12 and 24 h confirmed the antiviral function of EaBECN-1. Furthermore, EaBECN-1 overexpression protected the cells against H2O2-mediated apoptosis, as evidenced by the MTT assay, analysis of mRNA expression levels of apoptotic genes, and AO-EtBr staining. Overall, our study demonstrated the protective role of EaBECN-1 against viral pathogenesis and oxidative stress through autophagy, increasing our understanding of the role of beclin-1 in fish.


Asunto(s)
Lubina , Enfermedades de los Peces , Nodaviridae , Animales , Beclina-1/genética , Beclina-1/química , Secuencia de Aminoácidos , Secuencia de Bases , Peróxido de Hidrógeno/metabolismo , Antivirales/metabolismo , Estrés Oxidativo , Proteínas de Peces/química , Filogenia , Nodaviridae/fisiología , Mamíferos/metabolismo
11.
Fish Shellfish Immunol ; 138: 108804, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207886

RESUMEN

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.


Asunto(s)
Smegmamorpha , Animales , Cistatina C/genética , Papaína/genética , Streptococcus iniae/fisiología , Poli I-C/farmacología , Proteínas de Peces/química , Filogenia
12.
Fish Shellfish Immunol ; 134: 108629, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36822381

RESUMEN

The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1ß and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.


Asunto(s)
Antivirales , Smegmamorpha , Animales , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Citocinas/metabolismo , Receptores ErbB , Inmunidad , Proliferación Celular , Smegmamorpha/metabolismo
13.
Fish Shellfish Immunol ; 132: 108449, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436687

RESUMEN

Thioredoxins are small ubiquitous redox proteins that are involved in many biological processes. Proteins with thiol-disulfide bonds are essential regulators of cellular redox homeostasis and diagnostic markers for redox-dependent diseases. Here, we identified and characterized the thioredoxin domain-containing protein 12 (EaTXNDC12) gene in red spotted grouper (Epinephelus akaara), evaluated transcriptional responses, and investigated the activity of the recombinant protein using functional assays. EaTXNDC12 is a 19.22-kDa endoplasmic reticulum (ER)-resident protein with a 522-bp open reading frame and 173 amino acids, including a signal peptide. We identified a conserved active motif (66WCGAC70) and ER retention motif (170GDEL173) in the EaTXNDC12 amino acid sequence. Relative EaTXNDC12 mRNA expression was analyzed using 12 different tissues, with the highest expression seen in brain tissue, while skin tissue showed the lowest expression level. Furthermore, mRNA expression in response to immune challenges was analyzed in the head kidney, blood, and gill tissues. EaTXNDC12 was significantly modulated in response to bacterial endotoxin lipopolysaccharide (LPS), nervous necrosis virus (NNV), and polyinosinic:polycytidylic acid (poly(I:C)) challenges in all of the tested tissues. Recombinant EaTXNDC12 (rEaTXNDC12) displayed antioxidant ability in an insulin reductase assay, and a capacity for free radical inhibition in a 2,2-diphenyl-1-picryl-hydrazyl-hydrate assay. In addition, a DNA nicking assay revealed that purified rEaTXNDC12 exhibited concentration-dependent DNA protection activity, while results from 2-hydroxyethyl disulfide and L-dehydroascorbic assays indicated that rEaTXNDC12a possesses reducing ability. Furthermore, fathead minnow (FHM) cells transfected with EaTXNDC12-pcDNA demonstrated significantly upregulated cell survival against H2O2-induced apoptosis. Collectively, the results of this study strengthen our knowledge of EaTXNDC12 with respect to cellular redox hemostasis and immune regulation in Epinephelus akaara.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , Secuencia de Bases , Clonación Molecular , Peróxido de Hidrógeno/metabolismo , Inmunidad , ARN Mensajero/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/química , Disulfuros , Oxidorreductasas/metabolismo , ADN , Proteínas de Peces/química , Regulación de la Expresión Génica , Filogenia
14.
Fish Shellfish Immunol ; 133: 108552, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36669605

RESUMEN

Peroxiredoxin 1 is a member of the typical 2-Cys peroxiredoxin family, which serves diverse functions in gene expression, immune and inflammatory responses, and tumor progression. In this study, we aimed to analyze the structural, functional, and immunomodulatory properties of peroxiredoxin 1 from Epinephelus akaara (EaPrx1). The open reading frame of EaPrx1 is 597 base pairs in length, encoding 198 amino acids, with a molecular weight of approximately 22 kDa. The in silico analysis revealed that EaPrx1 shares a conserved thioredoxin fold and signature motifs that are critical for its catalytic activity and oligomerization. Further, EaPrx1 is closely related to Epinephelus lanceolatus Prx1 and clustered in the Fishes group of the vertebrate clade, revealing that EaPrx1 was conserved throughout evolution. In terms of tissue distribution, a high level of EaPrx1 expression was observed in the spleen, brain, and blood tissues. Likewise, in immune challenge experiments, significant transcriptional modulations of EaPrx1 upon lipopolysaccharide, polyinosinic:polycytidylic acid, and nervous necrosis virus injections were noted at different time points, indicating the immunological role of EaPrx1 against pathogenic infections. In the functional analysis, rEaPrx1 exhibited substantial DNA protection, insulin disulfide reduction, and tissue repair activities, which were concentration-dependent. EaPrx1/pcDNA™ 3.1 (+)-transfected fathead minnow cells revealed high cell viability upon arsenic toxicity, indicating the heavy metal detoxification activity of EaPrx1. Taken together, the transcriptional and functional studies imply critical roles of EaPrx1 in innate immunity, redox regulation, apoptosis, and tissue-repair processes in E. akaara.


Asunto(s)
Lubina , Enfermedades de los Peces , Animales , Peroxirredoxinas/genética , Peroxirredoxinas/química , Lubina/genética , Lubina/metabolismo , Inmunidad Innata/genética , Antioxidantes/metabolismo , Oxidación-Reducción , Filogenia , Regulación de la Expresión Génica , Proteínas de Peces/química
15.
Fish Shellfish Immunol ; 143: 109172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37858785

RESUMEN

Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 µg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish.


Asunto(s)
Antivirales , Autofagia , Galectinas , Smegmamorpha , Replicación Viral , Animales , Ratones , Antibacterianos/metabolismo , Antiinflamatorios/metabolismo , Antivirales/metabolismo , Peces/genética , Galectinas/genética , Galectinas/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas , Macrófagos , ARN Mensajero/metabolismo , Smegmamorpha/genética
16.
Fish Shellfish Immunol ; 141: 109009, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37598735

RESUMEN

Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Animales , Antioxidantes/metabolismo , Secuencia de Aminoácidos , Proteínas de Peces/química , Proteínas Recombinantes/genética , Tiorredoxinas/genética , Tiorredoxinas/química , ARN Mensajero
17.
Fish Shellfish Immunol ; 124: 442-453, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35460877

RESUMEN

Cystatins are a diverse group of cysteine protease inhibitors widely present among various organisms. Beyond their protease inhibitor function, cystatins play a crucial role in diverse pathophysiological conditions in animals, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. However, the role of cystatins in immunity against viral and bacterial infections in fish remains to be elucidated. In this study, the cystatin B from big-belly seahorse, Hippocampus abdominalis, designated as HaCSTB, was identified and characterized. HaCSTB shared the highest homology with type 1 cystatin family members of teleosts and had three cystatin catalytic domains with no signal peptides or disulfide bonds. HaCSTB transcripts were mainly expressed in peripheral blood cells (PBCs), followed by the testis and pouch of healthy big-belly seahorses. Immune challenge with lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (Poly I:C), and Streptococcus iniae induced upregulation of relative HaCSTB mRNA expression in PBCs. Subcellular localization analysis revealed the distribution of HaCSTB in the cytosol, mitochondria, and nuclei of fathead minnow cells (FHM). Recombinant HaCSTB (rHaCSTB) exhibited potent in vitro inhibitory activity against papain, a cysteine protease, in a concentration-, pH-, and temperature-dependent manner. Overexpression of HaCSTB in viral hemorrhagic septicemia virus (VHSV)-susceptible FHM cells increased cell viability and reduced VHSV-induced apoptosis. Collectively, these results suggest that HaCSTB might engage in the teleostean immune protection against bacteria and viruses.


Asunto(s)
Cyprinidae , Cistatinas , Enfermedades de los Peces , Smegmamorpha , Animales , Cyprinidae/genética , Cistatina B/genética , Cistatinas/genética , Proteínas de Peces/química , Masculino , Filogenia , Poli I-C/farmacología , Alineación de Secuencia
18.
Fish Shellfish Immunol ; 131: 559-569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36241004

RESUMEN

Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.


Asunto(s)
Lipopolisacáridos , Perciformes , Animales , Estructura Molecular , Inmunidad Innata/genética , Proteínas Portadoras , Peptidoglicano/farmacología , Peptidoglicano/metabolismo , Mamíferos/metabolismo
19.
Fish Shellfish Immunol ; 128: 196-205, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35932983

RESUMEN

Exosomes have garnered enormous interest for their role in physiological and pathological processes and their potential for therapeutic and diagnostic applications. In this study, exosomes were isolated from plasma of olive flounder (Paralichthys olivaceus) and their physiochemical and morphological characteristics, as well as wound healing and regeneration activities were determined. Isolated exosomes had typical characteristics, including average particle diameter (151.82 ± 9.17 nm), concentration (6.31 × 1010 particles/mL) with a membrane-bound, cup-shaped morphology. Exosome marker proteins, tetraspanins (CD63, CD9, and CD81), and acetylcholinesterase were detected, indicating the presence of exosomes in olive flounder plasma. Exosomes exhibited no toxicity in in vitro and in vivo studies, even at the highest treatment concentrations (100 and 400 µg/mL, respectively), confirming their suitability for further functional studies. Following exosome treatment (50 and 100 µg/mL), substantial cell migration with rapid closure of the open wound area in in vitro scratch wound healing assay and faster zebrafish larvae fin regeneration rate was observed compared to that of the vehicle. Moreover, exosomes exhibited immunomodulatory properties associated with wound healing, based on mRNA expression patterns in fathead minnow (FHM) cells. In conclusion, exosomes isolated from olive flounder plasma using ultracentrifugation exhibited minimal toxicity and enhanced wound healing and tissue regeneration activities. Identification and in-depth investigation of olive flounder plasma-derived exosome constituents will support the development of exosomes as an efficient therapeutic carrier system for fish medicine in the future.


Asunto(s)
Exosomas , Lenguado , Acetilcolinesterasa , Animales , Lenguado/genética , ARN Mensajero , Cicatrización de Heridas/fisiología , Pez Cebra/genética
20.
Fish Shellfish Immunol ; 125: 266-275, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35580797

RESUMEN

Reactive oxygen species modulator 1 (Romo1) is a mitochondrial inner membrane protein that induces mitochondrial reactive oxygen species (ROS) generation. In this study, we identified the Romo1 homolog from the black rockfish (Sebastes schlegelii), named it as SsRomo1, and characterized it at the molecular as well as functional levels. An open reading frame consisting of 240 bp was identified in the SsRomo1 complementary DNA (cDNA) sequence that encodes a 79 amino acid-long polypeptide with a molecular weight of 8,293 Da and a theoretical isoelectric point (pI) of 9.89. The in silico analysis revealed the characteristic features of SsRomo1, namely the presence of a transmembrane domain and the lack of a signal peptide. Homology analysis revealed that SsRomo1 exhibits the highest sequence identity with its fish counterparts (>93%) and shares a similar percentage of sequence identity with mammals (>92%). Additionally, it is closely clustered together with the fish clade in the constructed phylogenetic tree. The subcellular localization analysis confirmed its mitochondrial localization within the fathead minnow (FHM) cells. Under normal physiological conditions, the SsRomo1 mRNA is highly expressed in the rockfish ovary, followed by the blood and testis, indicating the abundance of mitochondria in these tissues. Furthermore, the significant upregulation of SsRomo1 in cells treated with lipopolysachharide (LPS), polyinosinic:polycytidylic acid, and Streptococcus iniae suggest that the increased ROS production is induced by SsRomo1 to eliminate pathogens during infections. Incidentally, we believe that this study is the first to determine the involvement of SsRomo1 in LPS-mediated nitric oxide (NO) production in RAW267.4 cells, based on their higher NO production as compared to that in the control. Moreover, overexpression of SsRomo1 enhanced the wound healing ability of FHM cells, indicating its high invasion and migration properties. We also determined the hydrogen peroxide-mediated cell viability of SsRomo1-overexpressed FHM cells and observed a significant reduction in viability, which is possibly due to increased ROS production. Collectively, our observations suggest that SsRomo1 plays an important role in oxidative stress modulation upon immune stimulation and in maintenance of tissue homeostasis in black rockfish.


Asunto(s)
Lubina , Perciformes , Secuencia de Aminoácidos , Animales , ADN Complementario/genética , Femenino , Proteínas de Peces/química , Inmunidad Innata/genética , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Estrés Oxidativo , Filogenia , Especies Reactivas de Oxígeno , Alineación de Secuencia , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA