Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400098, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862122

RESUMEN

Cellulose nanopaper is a material structure that possess high mechanical performance and is widely regarded as a promising two-dimensional reinforcement for polymer matrix composites. This work explores the use of low grammage bacterial cellulose (BC) nanopaper as reinforcement for poly(acrylated urethane) interlayer adhesive to increase the impact performance of multi-layer acrylic composites. The BC nanopaper is impregnated with an acrylated urethane resin and laminated between acrylic sheets to create BC/acrylic composites consisting of one, three and five layers of BC nanopaper-reinforced poly(acrylated urethane) interlayer adhesive(s). Both the the poly(acrylated urethane)-filled BC nanopaper interlayer adhesive and the resulting laminated acrylic composites are optically transparent. The incorporation of BC nanopaper into the poly(acrylated urethane) interlayer adhesive improves the tensile modulus by eightfold and the single-edge notched fracture toughness by 60% compared to neat poly(acrylated urethane). It was also found that using poly(acrylated urethane)-filled BC nanopaper interlayer adhesive proved beneficial to the impact properties of the resulting laminated acrylic composites. In Charpy impact testing, the impact strength of the multi-layer acrylic composites increased by up to 130% compared to the "gold-standard" impact-modified monolithic acrylic, with a BC loading of only 1.6 wt.-%. This article is protected by copyright. All rights reserved.

2.
Women Health ; 63(3): 175-185, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597593

RESUMEN

Developmental Origin of Health and Disease (DOHaD) explains how the health of the mother influences the offspring's risk of non-communicable diseases in later life. However, this remains underutilized in clinical practice. This study aimed to investigate the knowledge, attitude, and practice (KAP) of medical students, Obstetrics and Gynecology (O&G) and Pediatrics residents, toward DOHaD, identify potential barriers to DOHaD counseling, and translate DOHaD concepts into clinical practice. This cross-sectional study was conducted with a multi-section digital questionnaire, rated on a five-point Likert scale (1-5), with a higher score indicating better KAP. The scores between groups were compared using ANOVA. A total of 117 participants, comprising medical students (n = 75, 64.1 percent), O&G (n = 33, 28.2 percent) and Pediatric residents (n = 9, 7.7 percent), completed the questionnaire. The mean scores for the "Knowledge," "Attitude" and "Practice" sections were 3.73 (standard deviation 0.82), 4.27 (0.59) and 3.03 (0.52), respectively. O&G residents scored higher for the "Practice" section than Pediatric residents (mean scores 3.17 vs. 2.16; p = .048). Overall, the participants demonstrated good knowledge and attitude, but poor practice toward DOHaD. Thus, there is a need to improve education and training for health care professionals, develop a structured implementation framework, and provide a transdisciplinary care continuum for mother and child.


Asunto(s)
Ginecología , Obstetricia , Estudiantes de Medicina , Femenino , Embarazo , Humanos , Niño , Ginecología/educación , Estudiantes de Medicina/psicología , Estudios Transversales , Conocimientos, Actitudes y Práctica en Salud
3.
Proc Natl Acad Sci U S A ; 116(37): 18571-18577, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31375630

RESUMEN

Bacteriophage (phage) have attractive advantages as delivery systems compared with mammalian viruses, but have been considered poor vectors because they lack evolved strategies to confront and overcome mammalian cell barriers to infective agents. We reasoned that improved efficacy of delivery might be achieved through structural modification of the viral capsid to avoid pre- and postinternalization barriers to mammalian cell transduction. We generated multifunctional hybrid adeno-associated virus/phage (AAVP) particles to enable simultaneous display of targeting ligands on the phage's minor pIII proteins and also degradation-resistance motifs on the very numerous pVIII coat proteins. This genetic strategy of directed evolution bestows a next-generation of AAVP particles that feature resistance to fibrinogen adsorption or neutralizing antibodies and ability to escape endolysosomal degradation. This results in superior gene transfer efficacy in vitro and also in preclinical mouse models of rodent and human solid tumors. Thus, the unique functions of our next-generation AAVP particles enable improved targeted gene delivery to tumor cells.


Asunto(s)
Bacteriófago M13/genética , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Neoplasias/terapia , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bacteriófago M13/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Línea Celular Tumoral , Dependovirus/inmunología , Endosomas/inmunología , Endosomas/virología , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Humanos , Lisosomas/inmunología , Lisosomas/virología , Ratones , Neoplasias/genética , Oligopéptidos/genética , Oligopéptidos/inmunología , Prueba de Estudio Conceptual , Ratas , Transducción Genética/métodos , Internalización del Virus , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Am Chem Soc ; 142(9): 4367-4378, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078313

RESUMEN

Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO2 and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO2, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6-23 wt % CO2. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased ε-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate-b-decalactone-b-cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO2 selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38-71 kg mol-1), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability (Td,5 ∼ 280 °C), high toughness (112 MJ m-3), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 °C, toluene, p-toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO2-derived polymers.

5.
Biomacromolecules ; 21(1): 30-55, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31592650

RESUMEN

Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many ß-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.


Asunto(s)
Quitina/química , Hongos/química , Nanoestructuras/química , Exoesqueleto/química , Animales , Vendajes , Celulosa/química , Quitina/aislamiento & purificación , Crustáceos/química , Embalaje de Alimentos , Hongos/citología , Humanos , Polímeros/química
6.
Nano Lett ; 19(11): 8040-8048, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31560545

RESUMEN

Although Si acts as an electrical semiconductor, it has properties of an optical dielectric. Here, we revisit the behavior of Si as a plasmonic metal. This behavior was previously shown to arise from strong interband transitions that lead to negative permittivity of Si across the ultraviolet spectral range. However, few have studied the plasmonic characteristics of Si, particularly in its nanostructures. In this paper, we report localized plasmon resonances of Si nanostructures and the observation of plasmon hybridization in the UV (∼250 nm wavelength). In addition, simulation results show that Si nanodisk dimers can achieve a local intensity enhancement greater than ∼500-fold in a 1 nm gap. Lastly, we investigate hybrid Si-Al nanostructures to achieve sharp resonances in the UV, due to the coupling between plasmon resonances supported by Si and Al nanostructures. These results will have potential applications in the UV range, such as nanostructured devices for spectral filtering, plasmon-enhanced Si photodetectors, interrogation of molecular chirality, and catalysis. It could have significant impact on UV photolithography on patterned Si structures.

7.
J Environ Manage ; 269: 110766, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32560991

RESUMEN

The ever-increasing demand for carbon fibre reinforced polymers (CFRP) and stringent environmental legislation have driven the research into recycling and reusing the CFRP waste. This paper presents a mechanical recycling process of CFRP and the application of the recyclates as reinforcement for epoxy foams. The CFRP was mechanically processed using a jet mill. Up to 10 wt% of the CFRP recyclates, without separation of fibre-rich portion and resin-rich portion, was added into epoxy foams. The compressive modulus and strength of the epoxy foams increased from 288 MPa and 7.0 MPa, respectively, to 1060 MPa and 22.8 MPa, respectively, accompanied with an increase in foam density from 0.37 g cm-3 to 0.68 g cm-3. Consequently, the specific compressive modulus and strength (normalised against density) increased from 789 MPa cm3 g-1 and 19.1 MPa cm3 g-1 for unreinforced foam to 1563 MPa cm3 g-1 and 33.5 MPa cm3 g-1 for CFRP recyclates reinforced foam, representing a 98% and 75% improvement, respectively. These results demonstrate that the CFRP recyclates have excellent reinforcing ability for epoxy foams.


Asunto(s)
Fibra de Carbono , Polímeros , Reciclaje
9.
Philos Trans A Math Phys Eng Sci ; 376(2112)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29277741

RESUMEN

Cellulose nanopapers have gained significant attention in recent years as large-scale reinforcement for high-loading cellulose nanocomposites, substrates for printed electronics and filter nanopapers for water treatment. The mechanical properties of nanopapers are of fundamental importance for all these applications. Cellulose nanopapers can simply be prepared by filtering a suspension of nanocellulose, followed by heat consolidation. It was already demonstrated that the mechanical properties of cellulose nanopapers can be tailored by the fineness of the fibrils used or by modifying nanocellulose fibrils for instance by polymer adsorption, but nanocellulose blends remain underexplored. In this work, we show that the mechanical and physical properties of cellulose nanopapers can be tuned by creating nanopapers from blends of various grades of nanocellulose, i.e. (mechanically refined) bacterial cellulose or cellulose nanofibrils extracted from never-dried bleached softwood pulp by chemical and mechanical pre-treatments. We found that nanopapers made from blends of two or three nanocellulose grades show synergistic effects resulting in improved stiffness, strength, ductility, toughness and physical properties.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

10.
Nano Lett ; 17(10): 6267-6272, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28898084

RESUMEN

Wavefront manipulation in metasurfaces typically relies on phase mapping with a finite number of elements. In particular, a discretized linear phase profile may be used to obtain a beam bending functionality. However, discretization limits the applicability of this approach for high angle bending due to the drastic efficiency drop when the phase is mapped by a small number of elements. In this work, we discuss a novel concept for energy redistribution in diffraction gratings and its application in the visible spectrum range, which helps overcome the constraints of ultrahigh angle (above 80°) beam bending. Arranging asymmetric dielectric nanoantennas into diffractive gratings, we show that one can efficiently redistribute the power between the grating orders at will. This is achieved by precise engineering of the scattering pattern of the nanoantennas. The concept is numerically and experimentally demonstrated at visible frequencies using several designs of TiO2 (titanium dioxide) nanoantennas for medium (∼55°) and high (∼80°) angle light bending. Results show efficient broadband visible-light operation (blue and green range) of transmissive devices, reaching efficiencies of ∼90% and 50%, respectively, at the optimized wavelength. The presented design concept is general and can be applied for both transmission and reflection operation at any desired wavelength and polarization.

11.
Langmuir ; 33(23): 5707-5712, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28520438

RESUMEN

Basic adsorption of hydrophobic polymers from aprotic solvents was introduced as a platform technology to modify exclusively the surfaces of cellulose nanopapers. Dynamic vapor sorption demonstrated that the water vapor uptake ability of the nanopapers remained unperturbed, despite strong repellency to liquid water caused by the adsorbed hydrophobic polymer on the surface. This was enabled by the fact that the aprotic solvents used for adsorption did not swell the nanopaper unlike water that is generally applied as the adsorption medium in such systems. As case examples, the adsorptions of polystyrene (PS) and poly(trifluoroethylene) (PF3E) were followed by X-ray photoelectron spectroscopy and water contact angle measurements, backed up with morphological analysis by atomic force microscopy. The resulting nanopapers are useful in applications like moisture buffers where repellence to liquid water and ability for moisture sorption are desired qualities.

12.
Clin Oral Implants Res ; 28(4): 373-380, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26970296

RESUMEN

OBJECTIVES: To compare patient-centered outcome assessments (POAs) over a 2-week period after five categories of dento-alveolar surgical procedures. METHODS: A total of 339 patients in need of dento-alveolar surgical procedures such as simple tooth extraction (SE), transalveolar extraction (TE), straightforward implant placement (I), implant placement with guided bone regeneration (IGBR), and periodontal surgery (P) in Hong Kong (51.3%) and Nanjing dental clinic were consecutively recruited (2013-2015). POAs in terms of bleeding, swelling, pain, and bruising were obtained using 10 cm visual analog scale (VAS) on each day of the first week and the 14th day postsurgery. Clinical examinations were recorded on the 7th day postoperation. RESULTS: For the first 3 days of healing, area-under-the-curve (AUC) analyses showed that transalveolar extraction (TE) resulted in significantly higher overall bleeding and pain (AUC: Bleeding Mean = 5.6, Pain Mean = 7.5). However, implant placement with GBR (IGBR) resulted in significant higher level of swelling (AUC: Mean = 9.1) and bruising (Mean = 4.2) for the same period with also the highest use of painkillers. Healing outcomes of straightforward implant placement (I) were comparable to that of a simple extraction (SE). Two-week overall experience showed the symptoms quickly subsided for all groups. Prevalence for complications 1 week postoperatively was IGBR (20%), P (15.6%), I (12.7%), SE (4.8%), TE (1.5%), respectively. CONCLUSIONS: The highest extent of swelling and bruising was observed in patients who got implant placement with GBR (IGBR), while healing events of straightforward implants were similar to these of simple extraction. The VAS scores for all POAs parameters were generally low and decreased to nearly zero over the study period following all five surgical procedures. Low prevalence of postsurgical complications was reported.


Asunto(s)
Implantes Dentales , Atención Dirigida al Paciente , Periodoncio/cirugía , Complicaciones Posoperatorias/etiología , Extracción Dental , Resultado del Tratamiento , Humanos , Estudios Longitudinales , Dolor Postoperatorio/etiología , Estudios Prospectivos , Escala Visual Analógica
13.
Biomacromolecules ; 17(5): 1845-53, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27007744

RESUMEN

The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils.


Asunto(s)
Bacterias/metabolismo , Celulosa/química , Celulosa/metabolismo , Nanoestructuras/química , Nanotubos de Carbono/química , Propiedades de Superficie
14.
J Immunol ; 193(2): 840-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24929003

RESUMEN

The downstream of kinase (DOK) family of adaptors is generally involved in the negative regulation of signaling pathways. DOK1, 2, and 3 were shown to attenuate TLR4 signaling by inhibiting Ras-ERK activation. In this study, we elucidated a novel role for DOK3 in IFN-ß production. Macrophages lacking DOK3 were impaired in IFN-ß synthesis upon influenza virus infection or polyinosinic-polyribocytidylic acid stimulation. In the absence of DOK3, the transcription factor IFN regulatory factor 3 was not phosphorylated and could not translocate to the nucleus to activate ifn-ß gene expression. Interestingly, polyinosinic-polyribocytidylic acid-induced formation of the upstream TNFR-associated factor (TRAF) 3/TANK-binding kinase (TBK) 1 complex was compromised in dok3(-/-) macrophages. DOK3 was shown to bind TBK1 and was required for its activation. Furthermore, we demonstrated that overexpression of DOK3 and TBK1 could significantly enhance ifn-ß promoter activity. DOK3 was also shown to bind TRAF3, and the binding of TRAF3 and TBK1 to DOK3 required the tyrosine-rich C-terminal domain of DOK3. We further revealed that DOK3 was phosphorylated by Bruton's tyrosine kinase. Hence, DOK3 plays a critical and positive role in TLR3 signaling by enabling TRAF3/TBK1 complex formation and facilitating TBK1 and IFN regulatory factor 3 activation and the induction of IFN-ß production.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Células Cultivadas , Expresión Génica , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Factor 3 Regulador del Interferón/genética , Interferón beta/genética , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Orthomyxoviridae/fisiología , Fosforilación/efectos de los fármacos , Poli I-C/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor 3 Asociado a Receptor de TNF/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo
15.
Biomacromolecules ; 16(6): 1784-93, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25928444

RESUMEN

This work reports on the preparation and characterization of natural composite materials prepared from bacterial cellulose (BC) incorporated into a gelatin matrix. Composite morphology was studied using scanning electron microscopy and 2D Raman imaging revealing an inhomogeneous dispersion of BC within the gelatin matrix. The composite materials showed controllable degrees of transparency to visible light and opacity to UV light depending on BC weight fraction. By adding a 10 wt % fraction of BC in gelatin, visible (λ = 550 nm) and UV (λ = 350 nm) transmittances were found to decrease by ∼35 and 40%, respectively. Additionally, stress transfer occurring between the gelatin and BC fibrils was quantified using Raman spectroscopy. This is the first report for a gelatin-matrix composite containing cellulose. As a function of strain, two distinct domains, both showing linear relationships, were observed for which an average initial shift rate with respect to strain of -0.63 ± 0.2 cm(-1)%(-1) was observed, followed by an average shift rate of -0.25 ± 0.03 cm(-1)%(-1). The average initial Raman band shift rate value corresponds to an average effective Young's modulus of 39 ± 13 GPa and 73 ± 25 GPa, respectively, for either a 2D and 3D network of BC fibrils embedded in the gelatin matrix. As a function of stress, a linear relationship was observed with a Raman band shift rate of -27 ± 3 cm(-1)GPa(-1). The potential use of these composite materials as a UV blocking food coating is discussed.


Asunto(s)
Celulosa/química , Gelatina/química , Nanocompuestos/química , Nanocompuestos/efectos de la radiación , Estrés Mecánico , Rayos Ultravioleta
16.
Proc Natl Acad Sci U S A ; 109(15): 5791-6, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22454496

RESUMEN

Toll-like receptor 3 (TLR3) mediates antiviral response by recognizing double-stranded RNA. Its cytoplasmic domain is tyrosine phosphorylated upon ligand binding and initiates downstream signaling via the adapter TIR-containing adaptor inducing interferon-ß (TRIF). However, the kinase responsible for TLR3 phosphorylation remains unknown. We show here that Bruton's tyrosine kinase (BTK)-deficient macrophages failed to secrete inflammatory cytokines and IFN-ß upon TLR3 stimulation and were impaired in clearing intracellular dengue virus infection. Mutant mice were also less susceptible to d-galactosamine/p(I:C)-induced sepsis. In the absence of BTK, TLR3-induced phosphoinositide 3-kinase (PI3K), AKT and MAPK signaling and activation of NFκB, IRF3, and AP-1 transcription factors were all defective. We demonstrate that BTK directly phosphorylates TLR3 and in particular the critical Tyr759 residue. BTK point mutations that abrogate or led to constitutive kinase activity have opposite effects on TLR3 phosphorylation. Loss of BTK also compromises the formation of the downstream TRIF/receptor-interacting protein 1 (RIP1)/TBK1 complex. Thus, BTK plays a critical role in initiating TLR3 signaling.


Asunto(s)
Antivirales/inmunología , Virus del Dengue/inmunología , Proteínas Tirosina Quinasas/metabolismo , Receptor Toll-Like 3/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Citocinas/biosíntesis , Virus del Dengue/fisiología , Activación Enzimática , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Interferón beta/biosíntesis , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos , Macrófagos/enzimología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo , Replicación Viral
17.
Langmuir ; 30(2): 452-60, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24400918

RESUMEN

Water-in-oil emulsions stabilized solely by bacterial cellulose nanofibers (BCNs), which were hydrophobized by esterification with organic acids of various chain lengths (acetic acid, C2-; hexanoic acid, C6-; dodecanoic acid, C12-), were produced and characterized. When using freeze-dried C6-BCN and C12-BCN, only a maximum water volume fraction (ϕw) of 60% could be stabilized, while no emulsion was obtained for C2-BCN. However, the maximum ϕw increased to 71%, 81%, and 77% for C2-BCN, C6-BCN, and C12-BCN, respectively, 150 h after the initial emulsification, thereby creating high internal phase water-in-toluene emulsions. The observed time-dependent behavior of these emulsions is consistent with the disentanglement and dispersion of freeze-dried modified BCN bundles into individual nanofibers with time. These emulsions exhibited catastrophic phase separation when ϕw was increased, as opposed to catastrophic phase inversion observed for other Pickering emulsions.


Asunto(s)
Bacterias/química , Celulosa/química , Nanofibras/química , Aceites/química , Agua/química , Emulsiones/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
18.
Macromol Rapid Commun ; 35(19): 1640-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25042545

RESUMEN

Bacterial cellulose (BC) is often regarded as a prime candidate nano-reinforcement for the production of renewable nanocomposites. However, the mechanical performance of most BC nanocomposites is often inferior compared with commercially available polylactide (PLLA). Here, the manufacturing concept of paper-based laminates is used, i.e., "PaPreg," to produce BC nanopaper reinforced PLLA, which has been called "nanoPaPreg" by the authors. It is demon-strated that high-performance nanoPaPreg (vf = 65 vol%) with a tensile modulus and strength of 6.9 ± 0.5 GPa and 125 ± 10 MPa, respectively, can be fabricated. It is also shown that the tensile properties of nanoPaPreg are predominantly governed by the mechanical performance of BC nanopaper instead of the individual BC nanofibers, due to difficulties impregnating the dense nanofibrous BC network.


Asunto(s)
Bacterias/química , Celulosa/química , Nanoestructuras , Plásticos , Poliésteres/química
19.
ACS Appl Polym Mater ; 6(11): 6252-6261, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38903398

RESUMEN

The processing of an immiscible polymer blend using melt blending (i.e., extrusion) often results in a polymer material with inferior mechanical performance compared with its virgin counterparts. Here, we report and compare the properties of immiscible polymer blends produced from industrial mixed plastic waste from shredder residue comprising at least four different polymers (acrylonitrile butadiene styrene, polystyrene, polypropylene, and polyethylene) with and without a prior melt-blending step employed. As anticipated, mixed plastic blend produced with a prior melt-blending step exhibited a more homogeneous microstructure, resulting in brittleness, poor work of fracture, and single-edge notched fracture toughness with a flat R-curve. Without the intimate polymers mixing arising from melt blending, the resulting mixed plastic blend was found to possess a more heterogeneous concentric ellipsoid microstructure with large single polymer domains. This mixed plastic blend demonstrated progressive failure under uniaxial tensile loading, along with a more ductile single-edge notched fracture toughness response accompanied by a growing R-curve. Digital image correlation and fractographic analysis revealed that melt blending created a large number of incompatible polymer boundaries that acted as stress concentration points, leading to brittleness and earlier onset catastrophic failure. The more heterogeneous mixed plastic blend produced without using a prior melt-blending step contains a smaller number of incompatible polymer boundaries. Additionally, the presence of larger single polymer domains also implies that the mechanical characteristics of the single polymer can be exploited in the immiscible mixed plastic blend. Our work opens up a simple pathway to add value to mixed plastic waste from shredder residue for use in engineering applications, diverting them away from landfill or incineration.

20.
Nat Biotechnol ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565971

RESUMEN

Environmental concerns are driving interest in postpetroleum synthetic textiles produced from microbial and fungal sources. Bacterial cellulose (BC) is a promising sustainable leather alternative, on account of its material properties, low infrastructure needs and biodegradability. However, for alternative textiles like BC to be fully sustainable, alternative ways to dye textiles need to be developed alongside alternative production methods. To address this, we genetically engineer Komagataeibacter rhaeticus to create a bacterial strain that grows self-pigmenting BC. Melanin biosynthesis in the bacteria from recombinant tyrosinase expression achieves dark black coloration robust to material use. Melanated BC production can be scaled up for the construction of prototype fashion products, and we illustrate the potential of combining engineered self-pigmentation with tools from synthetic biology, through the optogenetic patterning of gene expression in cellulose-producing bacteria. With this study, we demonstrate that combining genetic engineering with current and future methods of textile biofabrication has the potential to create a new class of textiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA