Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 619(7970): 632-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344599

RESUMEN

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas , Antígenos de Histocompatibilidad Menor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Regulación hacia Arriba
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34253611

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory condition driven by diverse genetic and nongenetic programs that converge to disrupt immune homeostasis in the intestine. We have reported that, in murine intestinal epithelium with telomere dysfunction, DNA damage-induced activation of ataxia-telangiectasia mutated (ATM) results in ATM-mediated phosphorylation and activation of the YAP1 transcriptional coactivator, which in turn up-regulates pro-IL-18, a pivotal immune regulator in IBD pathogenesis. Moreover, individuals with germline defects in telomere maintenance genes experience increased occurrence of intestinal inflammation and show activation of the ATM/YAP1/pro-IL-18 pathway in the intestinal epithelium. Here, we sought to determine the relevance of the ATM/YAP1/pro-IL-18 pathway as a potential driver of IBD, particularly older-onset IBD. Analysis of intestinal biopsy specimens and organoids from older-onset IBD patients documented the presence of telomere dysfunction and activation of the ATM/YAP1/precursor of interleukin 18 (pro-IL-18) pathway in the intestinal epithelium. Employing intestinal organoids from healthy individuals, we demonstrated that experimental induction of telomere dysfunction activates this inflammatory pathway. In organoid models from ulcerative colitis and Crohn's disease patients, pharmacological interventions of telomerase reactivation, suppression of DNA damage signaling, or YAP1 inhibition reduced pro-IL-18 production. Together, these findings support a model wherein telomere dysfunction in the intestinal epithelium can initiate the inflammatory process in IBD, pointing to therapeutic interventions for this disease.


Asunto(s)
Enfermedades Inflamatorias del Intestino/inmunología , Telómero/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Interleucina-18/genética , Interleucina-18/inmunología , Mucosa Intestinal/inmunología , Ratones , Telomerasa/genética , Telomerasa/inmunología , Telómero/genética , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/inmunología
3.
Cell Mol Life Sci ; 79(1): 15, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34967918

RESUMEN

Excessive activation of the ionotropic N-methyl-D-aspartate (NMDA) receptor has been shown to cause abnormally high levels of Ca2+ influx, thereby leading to excitotoxic neuronal death. In this study, exposure of mouse primary cortical neurons to NMDA resulted in the cleavage and activation of mammalian sterile 20-like kinase-1 (MST1), both of which were mediated by calpain 1. In vitro cleavage assay data indicated that calpain 1 cleaves out the autoinhibitory domain of MST1 to generate an active form of the kinase. Furthermore, calpain 1 mediated the cleavage and activation of wild-type MST1, but not of MST1 (G339A). Intriguingly, NMDA/calpain-induced MST1 activation promoted the nuclear translocation of the kinase and the phosphorylation of histone H2B in mouse cortical neurons, leading to excitotoxicity. Thus, we propose a previously unrecognized mechanism of MST1 activation associated with NMDA-induced excitotoxic neuronal death.


Asunto(s)
Corteza Cerebral/patología , N-Metilaspartato/toxicidad , Neuronas/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Calpaína/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Ratones Endogámicos C57BL , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/toxicidad , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
4.
Cancer Discov ; 13(12): 2652-2673, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768068

RESUMEN

Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE: This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias del Colon , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Angiogénesis , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Lípidos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética
5.
Cancer Discov ; 12(7): 1702-1717, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537038

RESUMEN

Inactivation of adenomatous polyposis coli (APC) is common across many cancer types and serves as a critical initiating event in most sporadic colorectal cancers. APC deficiency activates WNT signaling, which remains an elusive target for cancer therapy, prompting us to apply the synthetic essentiality framework to identify druggable vulnerabilities for APC-deficient cancers. Tryptophan 2,3-dioxygenase 2 (TDO2) was identified as a synthetic essential effector of APC-deficient colorectal cancer. Mechanistically, APC deficiency results in the TCF4/ß-catenin-mediated upregulation of TDO2 gene transcription. TDO2 in turn activates the Kyn-AhR pathway, which increases glycolysis to drive anabolic cancer cell growth and CXCL5 secretion to recruit macrophages into the tumor microenvironment. Therapeutically, APC-deficient colorectal cancer models were susceptible to TDO2 depletion or pharmacologic inhibition, which impaired cancer cell proliferation and enhanced antitumor immune profiles. Thus, APC deficiency activates a TCF4-TDO2-AhR-CXCL5 circuit that affects multiple cancer hallmarks via autonomous and nonautonomous mechanisms and illuminates a genotype-specific vulnerability in colorectal cancer. SIGNIFICANCE: This study identifies critical effectors in the maintenance of APC-deficient colorectal cancer and demonstrates the relationship between APC/WNT pathway and kynurenine pathway signaling. It further determines the tumor-associated macrophage biology in APC-deficient colorectal cancer, informing genotype-specific therapeutic targets and the use of TDO2 inhibitors. This article is highlighted in the In This Issue feature, p. 1599.


Asunto(s)
Poliposis Adenomatosa del Colon , Neoplasias Colorrectales , Dioxigenasas , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Neoplasias Colorrectales/metabolismo , Dioxigenasas/metabolismo , Humanos , Triptófano , Triptófano Oxigenasa/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
Cancer Res ; 78(14): 3823-3833, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769196

RESUMEN

Advanced prostate cancer displays conspicuous chromosomal instability and rampant copy number aberrations, yet the identity of functional drivers resident in many amplicons remain elusive. Here, we implemented a functional genomics approach to identify new oncogenes involved in prostate cancer progression. Through integrated analyses of focal amplicons in large prostate cancer genomic and transcriptomic datasets as well as genes upregulated in metastasis, 276 putative oncogenes were enlisted into an in vivo gain-of-function tumorigenesis screen. Among the top positive hits, we conducted an in-depth functional analysis on Pygopus family PHD finger 2 (PYGO2), located in the amplicon at 1q21.3. PYGO2 overexpression enhances primary tumor growth and local invasion to draining lymph nodes. Conversely, PYGO2 depletion inhibits prostate cancer cell invasion in vitro and progression of primary tumor and metastasis in vivo In clinical samples, PYGO2 upregulation associated with higher Gleason score and metastasis to lymph nodes and bone. Silencing PYGO2 expression in patient-derived xenograft models impairs tumor progression. Finally, PYGO2 is necessary to enhance the transcriptional activation in response to ligand-induced Wnt/ß-catenin signaling. Together, our results indicate that PYGO2 functions as a driver oncogene in the 1q21.3 amplicon and may serve as a potential prognostic biomarker and therapeutic target for metastatic prostate cancer.Significance: Amplification/overexpression of PYGO2 may serve as a biomarker for prostate cancer progression and metastasis. Cancer Res; 78(14); 3823-33. ©2018 AACR.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Ganglios Linfáticos/patología , Masculino , Ratones , Ratones Desnudos , Clasificación del Tumor/métodos , Oncogenes/genética , Células PC-3 , Activación Transcripcional/genética , Regulación hacia Arriba/genética , Vía de Señalización Wnt/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1860(7): 761-772, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28487214

RESUMEN

Post-transcriptional gene regulation is an important step in eukaryotic gene expression. The last step to govern production of nascent peptides is during the process of mRNA translation. mRNA translation is controlled by many translation initiation factors that are susceptible to post-translational modifications. Here we report that one of the translation initiation factors, eIF4E, is phosphorylated by Mammalian Ste20-like kinase (MST1). Upon phosphorylation, eIF4E weakly interacts with the 5' CAP to inhibit mRNA translation. Simultaneously, active polyribosome is more associated with long noncoding RNAs (lncRNAs). Moreover, the linc00689-derived micropeptide, STORM (Stress- and TNF-α-activated ORF Micropeptide), is triggered by TNF-α-induced and MST1-mediated eIF4E phosphorylation, which exhibits molecular mimicry of SRP19 and, thus, competes for 7SL RNA. Our findings have uncovered a novel function of MST1 in mRNA and lncRNA translation by direct phosphorylation of eIF4E. This novel signaling pathway will provide new platforms for regulation of mRNA translation via post-translational protein modification.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Fosforilación/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Regulación de la Expresión Génica/fisiología , Células HeLa , Humanos , Ratones , Polirribosomas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Caperuzas de ARN/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA