Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 38(7): 1493-1503, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29853564

RESUMEN

OBJECTIVE: The mechanisms underlying the cardiovascular benefit of the anti-diabetic drug metformin are poorly understood. Recent studies have suggested metformin may upregulate macrophage reverse cholesterol transport. The final steps of reverse cholesterol transport are mediated by the sterol transporters, ABCG5 (ATP-binding cassette transporter G5) and ABCG8 (ATP-binding cassette transporter G8), which facilitate hepato-biliary transport of cholesterol. This study was undertaken to assess the possibility that metformin induces Abcg5 and Abcg8 expression in liver and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Metformin-treated mouse or human primary hepatocytes showed increased expression of Abcg5/8 and the bile salt export pump, Bsep. Administration of metformin to Western-type diet-fed mice showed significant upregulation of Abcg5/8 and Bsep. This resulted in increased initial clearance of 3H-cholesteryl ester HDL (high-density lipoprotein) from plasma. However, fecal 3H-cholesterol output was only marginally increased, possibly reflecting increased hepatic Ldlr (low-density lipoprotein receptor) expression, which would increase nonradiolabeled cholesterol uptake. Abcg5/8 undergo strong circadian variation. Available chromatin immunoprecipitation-Seq data suggested multiple binding sites for Period 2, a transcriptional repressor, within the Abcg5/8 locus. Addition of AMPK (5' adenosine monophosphate-activated protein kinase) agonists decreased Period 2 occupancy, suggesting derepression of Abcg5/8. Inhibition of ATP citrate lyase, which generates acetyl-CoA from citrate, also decreased Period 2 occupancy, with concomitant upregulation of Abcg5/8. This suggests a mechanistic link between feeding-induced acetyl-CoA production and decreased cholesterol excretion via Period 2, resulting in inhibition of Abcg5/8 expression. CONCLUSIONS: Our findings provide partial support for the concept that metformin may provide cardiovascular benefit via increased reverse cholesterol transport but also indicate increased Ldlr expression as a potential additional mechanism. AMPK activation or ATP citrate lyase inhibition may mediate antiatherogenic effects through increased ABCG5/8 expression.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Colesterol/sangre , Hepatocitos/efectos de los fármacos , Lipoproteínas/metabolismo , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Animales , Activación Enzimática , Células HEK293 , Hepatocitos/enzimología , Humanos , Lipoproteínas/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Circadianas Period/metabolismo , Cultivo Primario de Células , Receptores de LDL/metabolismo , Regulación hacia Arriba
2.
J Clin Invest ; 132(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104242

RESUMEN

Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.


Asunto(s)
Apolipoproteínas M , Factores de Transcripción Forkhead , Insulina , Hígado/metabolismo , Lisofosfolípidos , Esfingosina , Animales , Apolipoproteínas M/genética , Apolipoproteínas M/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Lipoproteínas HDL/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo
3.
Mol Metab ; 49: 101187, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33577983

RESUMEN

OBJECTIVE: Forkhead box protein O1 (FOXO1) plays a key role in regulating hepatic glucose production, but investigations of FOXO1 inhibition as a potential therapeutic approach have been hampered by a lack of selective chemical inhibitors. By profiling structurally diverse FOXO1 inhibitors, the current study validates FOXO1 as a viable target for the treatment of diabetes. METHODS: Using reporter gene assays, hepatocyte gene expression studies, and in vivo studies in mice, we profiled our leading tool compound 10 and a previously characterized FOXO1 inhibitor, AS1842856 (AS). RESULTS: We show that AS has significant FOXO1-independent effects, as demonstrated by testing in FOXO1-deficient cell lines and animals, while compound 10 is highly selective for FOXO1 both in vitro and in vivo and fails to elicit any effect in genetic models of FOXO1 ablation. Chronic administration of compound 10 improved insulin sensitivity and glucose control in db/db mice without causing weight gain. Furthermore, chronic compound 10 treatment combined with FGF21 led to synergistic glucose lowering in lean, streptozotocin-induced diabetic mice. CONCLUSIONS: We show that the widely used AS compound has substantial off-target activities and that compound 10 is a superior tool molecule for the investigation of FOXO1 function. In addition, we provide preclinical evidence that selective FOXO1 inhibition has potential therapeutic benefits for diabetes as a monotherapy or in combination with FGF21.


Asunto(s)
Glucemia/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteína Forkhead Box O1/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Proteína Forkhead Box O1/efectos de los fármacos , Proteína Forkhead Box O1/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Quinolonas/farmacología
4.
J Clin Invest ; 128(4): 1615-1626, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29408809

RESUMEN

Insulin resistance and type 2 diabetes are associated with low levels of high-density lipoprotein cholesterol (HDL-C). The insulin-repressible FoxO transcription factors are potential mediators of the effect of insulin on HDL-C. FoxOs mediate a substantial portion of insulin-regulated transcription, and poor FoxO repression is thought to contribute to the excessive glucose production in diabetes. In this work, we show that mice with liver-specific triple FoxO knockout (L-FoxO1,3,4), which are known to have reduced hepatic glucose production, also have increased HDL-C. This was associated with decreased expression of the HDL-C clearance factors scavenger receptor class B type I (SR-BI) and hepatic lipase and defective selective uptake of HDL cholesteryl ester by the liver. The phenotype could be rescued by re-expression of SR-BI. These findings demonstrate that hepatic FoxOs are required for cholesterol homeostasis and HDL-mediated reverse cholesterol transport to the liver.


Asunto(s)
HDL-Colesterol/metabolismo , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Lipasa/metabolismo , Hígado/metabolismo , Animales , HDL-Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Factores de Transcripción Forkhead/genética , Glucosa/genética , Resistencia a la Insulina/genética , Lipasa/genética , Ratones , Ratones Noqueados , Transporte de Proteínas , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
5.
Cell Metab ; 27(4): 816-827.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29576536

RESUMEN

Excess plasma triglycerides (TGs) are a key component of obesity-induced metabolic syndrome. We have shown that γ-secretase inhibitor (GSI) treatment improves glucose tolerance due to inhibition of hepatic Notch signaling but found additional Notch-independent reduction of plasma TG-rich lipoproteins (TRLs) in GSI-treated, as well as hepatocyte-specific, γ-secretase knockout (L-Ncst) mice, which suggested a primary effect on hepatocyte TRL uptake. Indeed, we found increased VLDL and LDL particle uptake in L-Ncst hepatocytes and Ncst-deficient hepatoma cells, in part through reduced γ-secretase-mediated low-density lipoprotein receptor (LDLR) cleavage and degradation. To exploit this novel finding, we generated a liver-selective Nicastrin ASO, which recapitulated glucose and lipid improvements of L-Ncst mice, with increased levels of hepatocyte LDLR. Collectively, these results identify the role of hepatic γ-secretase to regulate LDLR and suggest that liver-specific GSIs may simultaneously improve multiple aspects of the metabolic syndrome.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , LDL-Colesterol/sangre , VLDL-Colesterol/sangre , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas/sangre , Síndrome Metabólico , Receptores de LDL/sangre , Triglicéridos/sangre , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Glucosa/metabolismo , Intolerancia a la Glucosa/tratamiento farmacológico , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/patología , Masculino , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL
6.
PLoS One ; 12(1): e0168226, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28107353

RESUMEN

Diet-induced obesity (DIO) resulting from consumption of a high fat diet (HFD) attenuates normal neuronal responses to leptin and may contribute to the metabolic defense of an acquired higher body weight in humans; the molecular bases for the persistence of this defense are unknown. We measured the responses of 23 brain regions to exogenous leptin in 4 different groups of weight- and/or diet-perturbed mice. Responses to leptin were assessed by quantifying pSTAT3 levels in brain nuclei 30 minutes following 3 mg/kg intraperitoneal leptin. HFD attenuated leptin sensing throughout the brain, but weight loss did not restore central leptin signaling to control levels in several brain regions important in energy homeostasis, including the arcuate and dorsomedial hypothalamic nuclei. Effects of diet on leptin signaling varied by brain region, with results dependent on the method of weight loss (restriction of calories of HFD, ad lib intake of standard mouse chow). High fat diet attenuates leptin signaling throughout the brain, but some brain regions maintain their ability to sense leptin. Weight loss restores leptin sensing to some degree in most (but not all) brain regions, while other brain regions display hypersensitivity to leptin following weight loss. Normal leptin sensing was restored in several brain regions, with the pattern of restoration dependent on the method of weight loss.


Asunto(s)
Peso Corporal , Encéfalo/metabolismo , Leptina/metabolismo , Transducción de Señal , Animales , Glucemia/metabolismo , Composición Corporal , Dieta , Ingestión de Energía , Metabolismo Energético , Homeostasis , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA