Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Molecules ; 27(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364045

RESUMEN

Rice bran is rich in proteins with high nutritional values. However, current protein extraction methods from rice bran are greatly limited by their low yield. Therefore, in this study, we aimed to develop a feasible method to extract rice bran protein (RBP) of high purity and quality. We prepared RBP using low-heat-treated defatted rice bran (LDRB) and analyzed its functional properties. The protein solubility of LDRB increased from 25.4% to 56% upon increasing the pH level and was more than double that of heat-stabilized defatted rice bran. RBP prepared from LDRB had good functional properties, comparable to those of soy proteins. The emulsifying capacities of RBP were 424 ± 14 mL/g at pH 4 and 530 ± 21 mL/g at pH 7.0. Under acidic conditions, RBP showed a better emulsifying capacity than soy proteins (262 ± 1 mL/g at pH 4). RPB showed water-binding and oil-absorption capacities of 270 ± 35 g/100 g and 268 ± 30 g/100 g, respectively. Moreover, RBP showed better foaming capacity (610% vs. 590%) and foam stability (83% vs. 4%) than soy proteins; however, it lacked gelling properties. This study demonstrated that RBP is a potential new protein source in the food industry.


Asunto(s)
Oryza , Oryza/química , Calor , Proteínas de Plantas/química , Proteínas de Soja , Fenómenos Químicos
2.
Molecules ; 26(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34500739

RESUMEN

Edible insects have received global attention as an alternative protein-rich food. However, their structural characteristics make them difficult to digest. To overcome this obstacle, we assessed the techno-functional properties of three protein concentrates from the cricket Gryllus bimaculatus. Freeze-dried G. bimaculatus powder was defatted using ethanol, hexene, or acetone as solvents, and the techno-functional properties (protein solubility, water and oil holding capacity, foaming properties, emulsion capacity, and gel formation) of the protein concentrates were determined. Freeze-dried G. bimaculatus powder comprised approximately 17.3% crude fat and 51.3% crude protein based on dry weight. Ethanol was the most effective solvent for reducing the fat content (from 17.30% to 0.73%) and increasing the protein content (from 51.3% to 62.5%) of the concentrate. Techno-functionality properties drastically differed according to the defatting solvent used and foaming properties were most affected. Thus, the techno-functional and whole properties must be considered for proper application of edible insects to achieve global food sustainability.


Asunto(s)
Gryllidae/metabolismo , Proteínas de Insectos/metabolismo , Solventes/química , Solventes/farmacología , Animales , Proteínas de Insectos/efectos de los fármacos , Desnaturalización Proteica
3.
Faraday Discuss ; 200: 529-557, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28580969

RESUMEN

Cavity enhanced spectroscopy, CES, is a high sensitivity direct absorption method that has seen increasing utility in the last decade, a period also marked by increasing requirements for understanding human impacts on atmospheric composition. This paper describes the current NOAA six channel cavity ring-down spectrometer (CRDS, the most common form of CES) for measurement of nitrogen oxides and O3. It further describes the results from measurements from a tower 300 m above the urban area of Seoul in late spring of 2015. The campaign demonstrates the performance of the CRDS instrument and provides new data on both photochemistry and nighttime chemistry in a major Asian megacity. The instrument provided accurate, high time resolution data for N2O5, NO, NO2, NOy and O3, but suffered from large wall loss in the sampling of NO3, illustrating the requirement for calibration of the NO3 inlet transmission. Both the photochemistry and nighttime chemistry of nitrogen oxides and O3 were rapid in this megacity. Sustained average rates of O3 buildup of 10 ppbv h-1 during recurring morning and early afternoon sea breezes led to a 50 ppbv average daily O3 rise. Nitrate radical production rates, P(NO3), averaged 3-4 ppbv h-1 in late afternoon and early evening, much greater than contemporary data from Los Angeles, a comparable U. S. megacity. These P(NO3) were much smaller than historical data from Los Angeles, however. Nighttime data at 300 m above ground showed considerable variability in high time resolution nitrogen oxide and O3, likely resulting from sampling within gradients in the nighttime boundary layer structure. Apparent nighttime biogenic VOC oxidation rates of several ppbv h-1 were also likely influenced by vertical gradients. Finally, daytime N2O5 mixing ratios of 3-35 pptv were associated with rapid daytime P(NO3) and agreed well with a photochemical steady state calculation.

4.
Faraday Discuss ; 189: 231-51, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27138104

RESUMEN

South Korea has recently achieved developed country status with the second largest megacity in the world, the Seoul Metropolitan Area (SMA). This study provides insights into future changes in air quality for rapidly emerging megacities in the East Asian region. We present total OH reactivity observations in the SMA conducted at an urban Seoul site (May-June, 2015) and a suburban forest site (Sep, 2015). The total OH reactivity in an urban site during the daytime was observed at similar levels (∼15 s(-1)) to those previously reported from other East Asian megacity studies. Trace gas observations indicate that OH reactivity is largely accounted for by NOX (∼50%) followed by volatile organic compounds (VOCs) (∼35%). Isoprene accounts for a substantial fraction of OH reactivity among the comprehensive VOC observational dataset (25-47%). In general, observed total OH reactivity can be accounted for by the observed trace gas dataset. However, observed total OH reactivity in the suburban forest area cannot be largely accounted for (∼70%) by the trace gas measurements. The importance of biogenic VOC (BVOCs) emissions and oxidations used to evaluate the impacts of East Asian megacity outflows for the regional air quality and climate contexts are highlighted in this study.

5.
Nutrients ; 13(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960054

RESUMEN

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Asunto(s)
Interleucina-6/metabolismo , Lamiaceae/química , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Extractos Vegetales/farmacología , Factor de Transcripción ReIA/metabolismo , Animales , Etanol/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Extractos Vegetales/química , Células RAW 264.7
6.
J Anim Sci Technol ; 63(4): 827-840, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34447959

RESUMEN

Several studies have focused on Ca and P requirements for pigs. These requirements are estimated from their retention and bone formation. However, modern pig breeds have different responses to dietary Ca and P than traditional breeds, and their requirements are expected to change on an annual basis. Besides individual Ca and P needs, the Ca to P ratio (Ca/P) is an important factor in determining requirements. This study aimed to implement a linear and quadratic regression analysis to estimate Ca and P requirements based on average daily gain (ADG), apparent total tract digestibility (ATTD) of Ca (ATTD-Ca), ATTD of P (ATTD-P), and crude protein (CP) digestibility. Results show that Ca/P had linear and quadratic effects on ADG in the phytase-supplemented (PS) group in both the 6-11 kg and 11-25 kg categories. In the latter category, the CP digestibility was linearly increased in response to increasing Ca/P in the without-phytase (WP) group. In the 25-50 kg category, there was a linear response of ADG and linear and quadratic responses of CP digestibility to Ca/P in the PS group, while a linear and quadratic increase in CP digestibility and a quadratic effect on ATTD-Ca were observed in the WP group. In the 50-75 kg category, Ca/P had significant quadratic effects on ADG in the PS and WP groups, along with significant linear and quadratic effects on ATTD-Ca. In addition, Ca/P had significant quadratic effects on ATTD-P and led to a significant linear and quadratic increase in the CP digestibility in the WP group. In the 75-100 kg category, analysis showed a significant decrease in ATTD-Ca and ATTD-P in the PS and WP groups; in the latter, ATTD-P and ATTD-Ca were linearly decreased by increasing Ca/P. In conclusion, our equations predicted a higher Ca/P in the 6-25 kg bodyweight categories and a lower Ca/P in the 50-100 kg category than that recommended in the literature.

7.
Atmos Chem Phys ; 16(4): 1987-2006, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32742281

RESUMEN

The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the Linearlized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA