RESUMEN
To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.
Asunto(s)
Materiales Biocompatibles , Hidrogeles , Prótesis e Implantes , Heridas y Lesiones , Animales , Ratas , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/uso terapéutico , Conductividad Eléctrica , Oro/química , Hidrogeles/administración & dosificación , Hidrogeles/química , Hidrogeles/uso terapéutico , Nanopartículas del Metal/química , Músculos/lesiones , Músculos/inervación , Robótica , Heridas y Lesiones/rehabilitación , Heridas y Lesiones/cirugíaRESUMEN
Here, we present the synthesis and characterization of a novel 2D crystalline framework, named C2O, which mainly consists of carbon and oxygen in a 2:1 molar ratio and features crown ether holes in its skeletal structure. The covalent-frameworked 2D crown ether can be synthesized on a gram-scale and exhibits fine chemical stability in various environments, including acid, base, and different organic solvents. The C2O efficiently activates KI through the strong coordination of K+ with crown ether holes in a rigid framework, which enhances the nucleophilicity of I- and significantly improves its catalytic activity for CO2 fixation with epoxides. The presence of C2O with KI results in remarkable increases in CO2 conversion from 5.7% to 99.9% and from 2.9% to 74.2% for epichlorohydrin and allyl glycidyl ether, respectively. Moreover, C2O possesses both electrophilic and nucleophilic sites at the edge of its framework, allowing for the customization of physicochemical properties by a diverse range of chemical modifications. Specifically, incorporating allyl glycidyl ether (AGE) as an electrophile or ethoxyethylamine (EEA) as a nucleophile into C2O enables the synthesis of C2O-AGE or C2O-EEA, respectively. These modified frameworks exhibit improved conversions of 97.2% and 99.9% for CO2 fixation with allyl glycidyl ether, outperforming unmodified C2O showing a conversion of 74.2%. This newly developed scalable, durable, and customizable covalent framework holds tremendous potential for the design and preparation of outstanding materials with versatile functionalities, rendering them highly attractive for a wide range of applications.
RESUMEN
The chemical degradation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-based aqueous energy storage and catalytic systems is pH sensitive. Herein, we voltammetrically monitor the local pH (pHlocal) at a Pt ultramicroelectrode (UME) upon electro-oxidation of imidazolium-linker functionalized TEMPO and show that its decrease is associated with the greater acidity of the cationic (oxidized) rather than radical (reduced) form of TEMPO. The protons that drive the decrease in pH arise from hydrolysis of the conjugated imidazolium-linker functional group of 4-[2-(N-methylimidazolium)acetoxy]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (MIMAcO-T), which was studied in comparison with 4-hydroxyl-TEMPO (4-OH-T). Voltammetric hysteresis is observed during the electrode oxidation of 4-OH-T and MIMAcO-T at a Pt UME in an unbuffered aqueous solution. The hysteresis arises from the pH-dependent formation and dissolution of Pt oxides, which interact with pHlocal in the vicinity of the UME. We find that electrogenerated MIMAcO-T+ significantly influences pHlocal, whereas 4-OH-T+ does not. Finite element analysis reveals that the thermodynamic and kinetic acid-base properties of MIMAcO-T+ are much more favorable than those of its reduced counterpart. Imidazolium-linker functionalized TEMPO molecules comprising different linking groups were also investigated. Reduced TEMPO molecules with carbonyl linkers behave as weak acids, whereas those with alkyl ether linkers do not. However, oxidized TEMPO+ molecules with alkyl ether linkers exhibit more facile acid-base kinetics than those with carbonyl ones. Density functional theory calculations confirm that OH- adduct formation on the imidazolium-linker functional group of TEMPO is responsible for the difference in the acid-base properties of the reduced and oxidized forms.
RESUMEN
Development of robust electrocatalysts for the oxygen evolution reaction (OER) underpins the efficient production of green hydrogen via anion exchange membrane water electrolysis (AEMWE). This study elucidates the factors contributing to the degradation of cobalt-based (Co-based) OER catalysts synthesized via electrodeposition, thus establishing strategic approaches to enhance their longevity. Systematic variations in the electroplating process and subsequent heat treatment reveal a delicate balance between catalytic activity and durability, substantiated by comprehensive electrochemical assessments and material analyses. Building upon these findings, the Co-based anode is successfully optimized in the AEMWE single-cell configuration, showcasing an average degradation rate of 0.07 mV h-1 over a continuous operation for 1500 h at a current density of 1 A cm-2.
RESUMEN
The investigation of bottlebrush copolymer self-assembly in solution involves a comprehensive approach integrating simulation and experimental research, due to their unique physical characteristics. However, the intricate architecture of bottlebrush copolymers and the diverse solvent conditions introduce a wide range of parameter spaces. In this study, we investigated the solution self-assembly behavior of bottlebrush copolymers by combining dissipative particle dynamics (DPD) simulation results and machine learning (ML) including graph convolutional networks (GCNs). The architecture of bottlebrush copolymers is encoded by graphs including connectivity, side chain length, bead types, and interaction parameters of DPD simulation. Using GCN, we accurately predicted the single chain properties of bottlebrush copolymers with over 95% accuracy. Furthermore, phase behavior was precisely predicted using these single chain properties. Shapley additive explanations (SHAP) values of single chain properties to the various self-assembly morphologies were calculated to investigate the correlation between single chain properties and morphologies. In addition, we analyzed single chain properties and phase behavior as a function of DPD interaction parameters, extracting relevant physical properties for vesicle morphology formation. This work paves the way for tailored design in solution of self-assembled nanostructures of bottlebrush copolymers, offering a GCN framework for precise prediction of self-assembly morphologies under various chain architectures and solvent conditions.
RESUMEN
Screen printing (SP) has been extensively studied owing to its widespread industrial applications; however, only a few studies have focused on the substrate effect. Herein, we demonstrate that a screen-printed line can undergo a broadening effect or lateral undulation, which is determined by the substrate and printed dimensions. The degree of spreading was systematically investigated by employing 1D and 2D geometrical parameters. Based on the liquidity of the ink, we developed a simple inviscid theory with imposed perturbation to analyze the instability of screen-printed lines. The dispersion relation was derived to estimate the geometry of the laterally undulated lines and compared with the experimental results. The proposed argument is particularly applicable to a regime in which SP inks have greater liquidity. The screen-printed patterns exhibited unique undulated shapes and were utilized as photomasks for the facile fabrication of raccoon-type microchannels.
RESUMEN
In this study, the shear-induced lamellar alignment of a thin-film ABA triblock copolymer melt was achieved via a non-equilibrium coarse-grained molecular dynamics simulation. The ABA triblock copolymer system displayed a slightly different phase behavior under different shear conditions compared to the AB diblock copolymer system. Unlike previous studies that only considered the wall velocity, the Flory-Huggins parameter was considered in our study as a factor that determines lamellar alignment. Pre-aligned lamellae and randomly mixed polymers were used as the initial states for the shear simulation to compare the shear-induced lamellar alignment on each. The two initial conditions displayed different alignment behaviors; specifically, in the pre-aligned lamellae, a tilted structure was observed when the system was not aligned in the shear direction. To explain the difference between the tilted and realigned structures, the potential energy over the simulation time, polymer dynamics from the Van Hove correlation function, and the directional order parameter were investigated. It was inferred that a tilted structure is induced by the energy barrier of realignment originating from the restricted movement of the local polymer chains. Once they cross the energy barrier, block copolymers tend to align in the shear direction to attain energy stabilization through the polymer flow.
RESUMEN
Lithium-ion transport is significantly retarded in ionic liquids (ILs). In this work, we performed extensive molecular dynamics simulations to mimic the kinetics of lithium ions in ILs using [N-methyl-N-propylpyrrolidium (pyr[Formula: see text])][bis(trifluoromethanesulfonyl)imide (Ntf[Formula: see text])] with added LiNtf[Formula: see text] salt. And we analyzed their transport, developing a two-state model and comparing it to the machine learning-identified states. The transport of lithium ions involves local shell exchanges of the Ntf[Formula: see text] in the medium. We calculated train size distributions over various time scales. The train size distribution decays as a power law, representing non-Poissonian bursty shell exchanges. We analyzed the non-Poissonian processes of lithium ions transport as a two-state (soft and hard) model. We analytically calculated the transition probability of the two-state model, which fits well to the lifetime autocorrelation functions of LiNtf[Formula: see text] shells. To identify two states, we introduced the graph neutral network incorporating local molecular structure. The results reveal that the shell-soft state mainly contributes to the transport of the lithium ions, and their contribution is more important in low temperatures. Hence, it is the key for enhanced lithium ion transport to increase the fraction of the shell-soft state.
RESUMEN
In this study, the assembled structures of rod-coil diblock copolymer and nanoparticle blends were studied via dissipative particle dynamics (DPD). Thin films were composed of soft confinement DPD fluid beads and the fluctuating film structure was maintained during the simulation process. Analysis of the position of nanoparticles was done in the smectic lamellar phase of the rod-coil polymer matrix, and density distributions of rods, coils, and nanoparticles were obtained as functions of the size of the nanoparticle and the DPD repulsion constant between the rod and the nanoparticle. The distribution of nanoparticles was explained by using the concept of translational entropy of nanoparticles, stretching energy of the polymer chain, relative repulsion enthalpy of nanoparticles to rods or coils, and the effect of the liquid crystalline rod.
RESUMEN
Owing to the local/heterogeneous structures in supercooled liquids, after several decades of research, it is now clear that supercooled liquids are structurally different from their conventional liquid counterparts. Accordingly, an approach based on a local probe should provide a better understanding about the local mechanical properties as well as heterogeneous structures. Recently, the superiority of active microrheology over global rheology has been demonstrated [Yu et al., Sci. Adv., 2020, 6, 8766]. Here, we elaborate this new avenue of research and provide more evidence for such superiority. We report on the results of an extensive molecular dynamics simulation of active microrheology of a model glass. We identify several time scales in time series of friction, and detect a transition in dynamical behavior of friction. We discuss the possible relation to structural heterogeneities-a subject of considerable interest in glass physics.
RESUMEN
Correction for 'Dynamical time scales of friction dynamics in active microrheology of a model glass' by A. Madanchi et al., Soft Matter, 2021, DOI: 10.1039/d0sm02039g.
RESUMEN
Discovering new materials better suited to specific purposes is an important issue in improving the quality of human life. Here, a neural network that creates molecules that meet some desired multiple target conditions based on a deep understanding of chemical language is proposed (generative chemical Transformer, GCT). The attention mechanism in GCT allows a deeper understanding of molecular structures beyond the limitations of chemical language itself which cause semantic discontinuity by paying attention to characters sparsely. The significance of language models for inverse molecular design problems is investigated by quantitatively evaluating the quality of the generated molecules. GCT generates highly realistic chemical strings that satisfy both chemical and linguistic grammar rules. Molecules parsed from the generated strings simultaneously satisfy the multiple target properties and vary for a single condition set. These advances will contribute to improving the quality of human life by accelerating the process of desired material discovery.
Asunto(s)
Lenguaje , Aprendizaje Automático , Humanos , Estructura Molecular , Redes Neurales de la Computación , SemánticaRESUMEN
The formation mechanism of colloidal nanoparticles is complex because significant nonclassical pathways coexist with the conventional nucleation and growth processes. Particularly, the coalescence of the growing clusters determines the final morphology and crystallinity of the synthesized nanoparticles. However, the experimental investigation of the coalescence mechanism is a challenge because the process is highly kinetic and correlates with surface ligands that dynamically modify the surface energy and the interparticle interactions of nanoparticles. Here, we employ quantitative in situ TEM with multichamber graphene liquid cell to observe the coalescence processes occurring in the synthesis of gold nanoparticles in different ligand systems, thus affording us an insight into their ligand-dependent coalescence kinetics. The analyses of numerous liquid-phase TEM trajectories of the coalescence and MD simulations of the ligand shells demonstrate that enhanced ligand mobility, employing a heterogeneous ligand mixture, results in the rapid nanoparticle pairing approach and a fast post-merging structural relaxation.
Asunto(s)
Grafito , Nanopartículas del Metal , Oro , Ligandos , Microscopía Electrónica de TransmisiónRESUMEN
Next-generation energy storage devices such as lithium-sulfur batteries (LSBs) face several challenges including fast charging and high-power delivery. Thus, it is necessary to improve the stability of the electrodes with efficient electrochemical system. In this work, a durable sulfur cathode even at high rates is enabled via lean binder content. The binder consists of a chitosan cross-linked with a carboxylated nitrile-butadiene rubber (XNBR), which exhibits high affinity toward lithium polysulfide along with robust mechanical properties because of the synergistic effect of the polar chitosan and the elastomeric XNBR. Despite using extremely small content of binder (3 wt%), the LSB shows a highly stable long-term cycling performance with capacity retention decay values of 0.026% and 0.029% after 500 cycles at 5 and 10 C. Moreover, the cell shows an outstanding specific capacity of 228 mAh g-1 at an ultrahigh charge-discharge rate of 20â¯C. This approach may significantly improve the design of the sulfur cathode and pave a facile way to fabricate commercially viable next-generation energy storage devices.
RESUMEN
The formation of a hexagonal phase from disordered phase is one of the typical order-disorder transitions (ODTs) observed in asymmetric diblock copolymer systems. In order to drive this transition in a particle-based simulation, we introduce a shell-based bond-orientational order parameter that selectively responds to the mesoscopic order of the hexagonal cylinder phase. From metadynamics simulations in a bond-free particle model system, the characteristic pathway involved with the underlying free energy surface is deduced for the disordered-to-hexagonal transition. It is shown consecutively that the transition pathway and the metastable state are reproduced in dissipative particle dynamics simulations for the corresponding transition in a bulk asymmetric block copolymer melt system. These agreements suggest that efficient strategies for enhanced sampling with particle-based simulations of block copolymer systems can be devised using coarse-grained pictures of the mesoscopic order.
RESUMEN
Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.
RESUMEN
This work proposes a classification algorithm based on the radical Voronoi tessellation to define the Widom delta, supercritical gas-liquid coexistence region, of polyatomic molecules. Specifically, we use a weighted mean-field classification method to classify a molecule into either gaslike or liquidlike. Classical percolation theory methods are adopted to understand the generality of the structural transition and to locate the Widom delta. A structural analysis on various supercritical fluids shows that the proposed method detects the influence of the attractive interaction on the structural transition of supercritical fluids. Moreover, we demonstrate that the supercritical gas-liquid coexistence region of water overlaps with the ridges of the response function maxima. From the pressure-temperature relation, a three-parameter corresponding state theorem is derived, which states that the fraction of gaslike molecules of a substance is equal to that of another if their reduced pressure, reduced temperature, and the critical compressibility factor are the same.
RESUMEN
Nanoparticles are used extensively to detect nucleic acid biomarkers due to their analytical applicability and sensitivity. Systems employing the surface plasmon resonance of gold nanomaterials are overwhelmingly considered to be candidates. The aggregation of gold nanomaterials mediated by the hybridization of target DNA at the interface causes a change in the surface plasmon resonance inherent in gold nanomaterials. Such changes can be measured by spectroscopy or even visualized by the naked eye, enabling effective and positive detection. The optical properties of gold nanoparticles are affected by their shape. The geometric appearance of the nanoparticles also affects their colloidal stability and aggregation behavior. In this study, we examined the effect of the geometric appearance of gold nanomaterials on DNA-mediated aggregation behavior through comparative experiments. Experimental and theoretical methods were used concurrently to derive accurate results and to support the hypotheses. Coarse-grained molecular dynamics simulations were performed with a large-scale atomic/molecular massively parallel simulator to understand the aggregation of nanoparticles with the same surface area and various aspect ratios. As a result, we confirmed that the aggregation sensitivity of nanoparticles was affected by the shape of the contact point with the gold nanomaterials. This study demonstrates that the design of a detection system should be accompanied by an in-depth review of the morphology of the nanoparticle.
Asunto(s)
Sondas de ADN/química , ADN de Cadena Simple/química , Oro/química , Nanopartículas del Metal/química , Nanotubos/química , Secuencia de Bases , Sondas de ADN/genética , ADN de Cadena Simple/genética , Humanos , Simulación de Dinámica Molecular , Hibridación de Ácido Nucleico , Tamaño de la Partícula , Resonancia por Plasmón de Superficie/métodos , Telomerasa/químicaRESUMEN
We present a probabilistic classification algorithm to understand the structural transition of supercritical Lennard-Jones (LJ) fluid. The classification algorithm is designed based on the exploratory data analysis on the nearest Voronoi neighbors of subcritical vapor and liquid. The algorithm is tested and applied to LJ type fluids modeled with the truncated and shifted potential and the Weeks-Chandler-Andersen potential. The algorithm makes it available to locate the Widom delta, which encloses the supercritical gas-liquid boundary and the percolation transition loci in a geometrical manner, and to conjecture the role of attractive interactions on the structural transition of supercritical fluids. Thus, the designed algorithm offers an efficient and comprehensible method to understand the phase behavior of a supercritical mesophase.
RESUMEN
Herein, we report unique features of the assemblies of tetrapod-shaped colloidal nanocrystals (TpNCs) with lengthy arms applicable to flexible thin-film transistors. Due to the extended nature of tetrapod geometry, films made of the TpNC assemblies require reduced numbers of inter-NC hopping for the transport of charge carriers along a given channel length; thus, enhanced conductivity can be achieved compared to those made of typical spherical NCs without arms. Moreover, electrical conduction through the assemblies is tolerant against mechanical bending because interconnections between TpNCs can be well-preserved under bending. Interestingly, both the conductivity of the assemblies and their mechanical tolerance against bending are improved with an increase in the length of tetrapod arms. The arm length-dependency was demonstrated in a series of CdSe TpNC assemblies with different arm lengths (l = 0-90 nm), whose electrical conduction was modulated through electrolyte gating. From the TpNCs with the longest arm length included in the study (l = 90 nm), the film conductivity as high as 20 S/cm was attained at 3 V of gate voltage, corresponding to electron mobility of >10 cm2/(V s) even when evaluated conservatively. The high channel conductivity was retained (â¼90% of the value obtained from the flat geometry) even under high bending (bending radius = 5 mm). The results of the present study provide new insights and guidelines for the use of colloidal nanocrystals in solution-processed flexible electronic device applications.