Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2307910, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072788

RESUMEN

To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([Cu─µâ”€C(═O)O─Bi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]˙ formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.

2.
Small ; : e2307180, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054789

RESUMEN

Despite the unique advantages of single-atom catalysts, molecular dual-active sites facilitate the C-C coupling reaction for C2 products toward the CO2 reduction reaction (CO2 RR). The Ni/Cu proximal dual-active site catalyst (Ni/Cu-PASC) is developed, which is a harmonic catalyst with dual-active sites, by simply mixing commercial Ni-phthalocyanine (Ni-Pc) and Cu-phthalocyanine (Cu-Pc) molecules physically. According to scanning transmission electron microscopy (STEM) and transmission electron microscopy (TEM) energy dispersive spectroscopy (EDS) data, Ni and Cu atoms are separated, creating dual-active sites for the CO2 RR. The Ni/Cu-PASC generates ethanol with an FE of 55%. Conversely, Ni-Pc and Cu-Pc have only detected single-carbon products like CO and HCOO- . In situ X-ray absorption spectroscopy (XAS) indicates that CO generation is caused by the stable Ni active site's balanced electronic state. The CO production from Ni-Pc consistently increased the CO concentration over Cu sites attributed to subsequent reduction reaction through a C-C coupling on nearby Cu. The CO bound (HCOO- ) peak, which can be found on Cu-Pc, vanishes on Ni/Cu-PASC, as shown by in situ fourier transformation infrared (FTIR). The characteristic intermediate of *CHO instead of HCOO- proves to be the prerequisite for multi-carbon products by electrochemical CO2 RR. The work demonstrates that the harmonic dual-active sites in Ni/Cu-PASC can be readily available by the cascading proximal active Ni- and Cu-Pc sites.

3.
Analyst ; 148(3): 643-653, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36621928

RESUMEN

Light-emitting diodes (LEDs), particularly in the blue waveform range, are regarded as a major source of circadian rhythm dysregulation. A circadian rhythm dysregulation induced by blue LEDs is associated with non-alcoholic fatty liver disease (NAFLD). Hepatocellular accumulation of lipids is a key event in the early stages of NAFLD. Kupffer cells (KCs) have been reported to be lost in the early onset of NAFLD followed by an inflammatory reaction that alters the liver response to lipid overload. This study focused on the detection of the initial stages (subpathological stages) of LED light-triggered NAFLD. Mice were exposed to either blue or white LED irradiation for 44 weeks. Synchrotron radiation-based Fourier-transform infrared microspectroscopy (SR-FTIRM) and wax physisorption kinetic-Fourier transform infrared (WPK-FTIR) imaging were used to evaluate the ratio of lipid to protein and the glycosylation of glycoprotein, respectively. Immunohistopathological studies on KCs and circadian-related proteins were performed. Although liver biopsy showed normal pathology, an SR-FTIRM study revealed a high hepatic lipid-to-protein ratio after receiving LED illumination. The results of WPK-FTIR demonstrated that a high inflammation index was found in the high irradiance of the blue LED illumnation group. These groups showed a decrease in KC number and an increase in Bmal1 and Reverbα circadian protein expression. These findings provide explanations for the reduction of KCs without subsequent inflammation. A significant reduction of Per2 and Cry1 expression is correlated with the findings of WPK-FTIR imaging. WPK-FTIR is a sensitive method for detecting initiative stages of NAFLD induced by long-term blue LED illumination.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Análisis de Fourier , Inflamación/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ceras , Luz
4.
J Environ Manage ; 305: 114344, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953223

RESUMEN

Soil fertility and phosphorus management by bone apatite amendment are receiving increasing attention, yet further research is needed to integrate the physicochemical and mineralogical transformation of bone apatite and their impact on the supply and storage of phosphorus in soil. This study has examined bone transformation in the field over a span of 10-years using a set of synchrotron-based microscopic and spectroscopic techniques. Transmission X-ray microscopy (TXM) observations reveal the in-situ deterioration of bone osteocyte-canaliculi system and sub-micron microbial tunneling within a year. Extensive organic decomposition, secondary mineral formation and re-mineralization of apatite are evident from the 3rd year. The relative ratio of (v1 + v3) PO43- to v3 CO32- and to amide I increase, and the v3c PO43- peak exhibits a blue-shift in less than 3 years. The carbonate substitution of bone hydroxyapatite (HAp) to AB-type CHAp, and phosphate crystallographic rearrangement become apparent after 10 years' aging. The overall CO32- peak absorbance increases over time, contributing to a higher acid susceptibility in the aged bone. The X-ray Photoelectron Spectroscopy (XPS) binding energies for Ca (2p), P (2p) and O (1s) exhibit a red-shift after 1 year because of organo-mineral interplay and a blue-shift starting from the 3rd year as a result of the de-coupling of mineral and organic components. Nutrient supply to soil occurs within months via organo-mineral decoupling and demineralization. More phosphorus has been released from the bones and enriched in the associated and adjacent soils over time. Lab incubation studies reveal prominent secondary mineral formation via re-precipitation at a pH similar to that in soil, which are highly amorphous and carbonate substituted and prone to further dissolution in an acidic environment. Our high-resolution observations reveal a stage-dependent microbial decomposition, phosphorus dissolution and immobilization via secondary mineral formation over time. The active cycling of phosphorus within the bone and its interplay with adjacent soil account for a sustainable supply and storage of phosphorus nutrients.


Asunto(s)
Apatitas , Fósforo , Huesos , Durapatita , Suelo
5.
AAPS PharmSciTech ; 22(5): 200, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212283

RESUMEN

Mucositis is one of the most adverse effects of 5-fluorouracil (5-FU) and had no standard drug for treatment. Melatonin is a neurohormone, and can ameliorate radiotherapy-induced small intestinal mucositis. Melatonin encapsulated in niosomes improved its poor bioavailability. Succinyl melatonin, a melatonin derivative, showed prolonged release compared with melatonin. This study investigated the efficacy of melatonin niosome gel (MNG) and succinyl melatonin niosome gel (SNG) in 5-FU-induced small intestinal mucositis treatment in mice. MNG and SNG with particle sizes of 293 and 270 nm were shown to have mucoadhesive potentials. The effect of a daily oral application of MNG, SNG, or fluocinolone acetonide gel (FAG, positive control) was compared to that of the normal group. The body weight, food consumption, histology, Fourier transform infrared (FTIR) spectroscopy, inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß), and malondialdehyde (MDA) in the small intestine were monitored. The results showed decreased %body weight and food consumption in all 5-FU-injected groups compared with the normal group. The MNG and SNG treatments maintained the food consumption and the normal integrity of the small intestines, as evidenced by villus length and crypt depth, similar to the observations in the normal groups. The FTIR spectra showed no change in lipids of the MNG and SNG groups compared with the normal group. Moreover, SNG could reduce IL-1ß content to a level that was not different from the level in the normal groups. Therefore, the oral application of MNG and SNG could protect against 5-FU-induced small intestinal mucositis in mice.


Asunto(s)
Liposomas/química , Melatonina/administración & dosificación , Mucositis/tratamiento farmacológico , Administración Oral , Animales , Fluorouracilo/toxicidad , Interleucina-1beta/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestino Delgado/patología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Melatonina/química , Melatonina/farmacología , Ratones , Ratones Endogámicos ICR , Mucositis/inducido químicamente , Mucositis/patología , Tamaño de la Partícula , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 19(2)2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29364155

RESUMEN

Candida albicans is the most commonly encountered human fungal pathogen, and it is traditionally treated with antimicrobial chemical agents. The antimicrobial effect of these agents is largely weakened by drug resistance and biofilm-associated virulence. Enhancement of the antimicrobial activity of existing agents is needed for effective candidiasis treatment. Our aim was to develop a therapy that combined biofilm disruption with existing antimicrobial agents. Photodynamic therapy (PDT) utilizing curcumin and blue light was tested as an independent therapy and in combination with fluconazole treatment. Viability assays and morphology analysis were used to assess the effectiveness of C. albicans treatment. Results showed that fluconazole treatment decreased the viability of planktonic C. albicans, but the decrease was not as pronounced in adherent C. albicans because its biofilm form was markedly more resistant to the antimicrobiotic. PDT effectively eradicated C. albicans biofilms, and when combined with fluconazole, PDT significantly inhibited C. albicans to a greater extent. This study suggests that the addition of PDT to fluconazole to treat C. albicans infection enhances its effectiveness and can potentially be used clinically.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/efectos de la radiación , Fotoquimioterapia , Antifúngicos/uso terapéutico , Biopelículas/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Candidiasis/microbiología , Candidiasis/terapia , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/efectos de la radiación , Terapia Combinada , Curcumina/farmacología , Curcumina/uso terapéutico , Fluconazol/farmacología , Fluconazol/uso terapéutico , Radicales Libres/metabolismo , Humanos , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Oxígeno Singlete/metabolismo
7.
Langmuir ; 33(50): 14244-14251, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29148786

RESUMEN

We observed the growth phase transition of n-alkanethiols (AT), CH3(CH2)n-1SH, n = 4-16, directly implanted on a bare Si(111) surface, forming an AT monolayer. These monolayers were characterized with static water-contact angle, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray fine-structure spectroscopy, and grazing-angle reflection absorption Fourier-transform infrared spectroscopy. The integrated spectral results indicated that the implanted n-AT molecules formed a self-oriented and densely packed monolayer through formation of an S-Si bond. With the number of carbons in the alkyl chain at six or more, namely beginning at hexanethiol, the molecular monolayer began to develop an orientation-ordered structure, which is clearly shorter than that for AT monolayers on Au and Ag. This result implies that, with a stronger molecule-substrate interaction, an ordered molecular monolayer can form with a short chain.

8.
Int J Mol Sci ; 17(3): 427, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27011183

RESUMEN

Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan residues in the process of arsenic carcinogenesis.


Asunto(s)
Arsenitos/farmacología , Glicoproteínas de Membrana/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Línea Celular Tumoral , Glicosilación , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo
9.
Int J Mol Sci ; 15(10): 17963-73, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25299694

RESUMEN

Ovarian cancer, as well as other cancers, is primarily caused by methylation at cytosines in CpG islands, but the current marker for ovarian cancer is low in sensitivity and failed in early-stage detection. Fourier transform infrared (FT-IR) spectroscopy is powerful in analysis of functional groups within molecules, and infrared microscopy illustrates the location of specific groups within single cells. In this study, we applied HPLC and FT-IR microspectrometry to study normal epithelial ovarian cell line immortalized ovarian surface epithelium (IOSE), two epithelial ovarian cell lines (A2780 and CP70) with distinct properties, and the effect of a cancer drug 5-aza-2'-deoxycytidine (5-aza) without labeling. Our results reveal that inhibition of methylation on cytosine with 5-aza initiates the protein expression. Furthermore, paraffin-adsorption kinetic study allows us to distinguish hypermethylated and hypomethyated cells, and this assay can be a potential diagnosis method for cancer screening.


Asunto(s)
Membrana Celular/metabolismo , Azacitidina/análogos & derivados , Azacitidina/toxicidad , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Islas de CpG , Metilación de ADN/efectos de los fármacos , ADN Ribosómico/metabolismo , Decitabina , Desoxicitidina Monofosfato/análisis , Epigenómica , Femenino , Humanos , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Espectroscopía Infrarroja por Transformada de Fourier
10.
Bioresour Technol ; 406: 130912, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821424

RESUMEN

Addressing geogenic and anthropogenic arsenic (As) pollution is critical for environmental health. This study explored arsenite [As(III)] removal using Cyanidiales, particularly Cyanidium caldarium (Cc) and Galdieria partita (Gp), under acidic to neutral pH, and determined As(III) detoxification mechanisms in relation to As speciation and protein secondary structure in Cyanidiales. Regarding As(III) sorption amounts, Cc outperformed Gp, reaching 83.2 mg g-1 of removal at pH 5.0. Wherein, 23.5 % of sorbed As on Cc presented as arsenate [As(V)] complexation with polysaccharides, alongside other predominant species including As(III)-cysteine (41.2 %) and As(III)-polysaccharides (35.3 %) complexes. This suggested that As(III) was directly transported into cells, rather than As(V). Coupled with the formation of As(III)-cysteine complexes within cells, these mechanisms may be key to efficiently accumulating As(III) in Cyanidiales during the 6-h incubation. These results highlight the potential of Cyanidiales for sustainable As(III) remediation and provide new insights into managing As(III) toxicity.

11.
Anal Bioanal Chem ; 405(6): 1995-2007, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23318761

RESUMEN

Infrared microspectroscopy is an emerging approach for disease analysis owing to its capability for in situ chemical characterization of pathological processes. Synchrotron-based infrared microspectroscopy (SR-IMS) provides ultra-high spatial resolution for profiling biochemical events associated with disease progression. Spectral alterations were observed in cultured oral cells derived from healthy, precancerous, primary, and metastatic cancers. An innovative wax-physisorption-based kinetic FTIR imaging method for the detection of oral precancer and cancer was demonstrated successfully. The approach is based on determining the residual amount of paraffin wax (C(25)H(52)) or beeswax (C(46)H(92)O(2)) on a sample surface after xylene washing. This amount is used as a signpost of the degree of physisorption that altered during malignant transformation. The results of linear discriminant analysis (LDA) of oral cell lines indicated that the methylene (CH(2)) and methyl group (CH(3)) stretching vibrations in the range of 3,000-2,800 cm(-1) have the highest accuracy rate (89.6 %) to discriminate the healthy keratinocytes (NHOK) from cancer cells. The results of wax-physisorption-based FTIR imaging showed a stronger physisorption with beeswax in oral precancerous and cancer cells as compared with that of NHOK, which showed a strong capability with paraffin wax. The infrared kinetic study of oral cavity tissue showed a consistency in the wax physisorption of the cell lines. On the basis of our findings, these results show the potential use of wax-physisorption-based kinetic FTIR imaging for the early screening of oral cancer lesions and the chemical changes during oral carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/química , Queratinocitos/clasificación , Neoplasias de la Boca/química , Neoplasias de la Boca/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ceras , Línea Celular Tumoral , Análisis Discriminante , Diagnóstico Precoz , Humanos , Queratinocitos/química , Queratinocitos/citología , Cinética , Cultivo Primario de Células , Ceras/química , Xilenos
12.
iScience ; 26(1): 105679, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36713260

RESUMEN

The teeth of limbed vertebrates used for capturing and processing food are composed of mineralized dentine covered by hypermineralized enamel, the hardest material organisms produce. Here, we combine scanning probe microscopy, depth sensing, and spectromicroscopy (SR-FTIR) to characterize the surface ultrastructural topography, nanotribology, and chemical compositions of mammal species with different dietary habits, including omnivorous humans. Our synergistic approach shows that enamel with greater surface hardness or thickness exhibited a more salient gradient feature from the tooth surface to the dentino-enamel junction (DEJ) one that corresponds to the in situ phosphate-to-amide ratio. This gradient feature of enamel covering softer dentine is the determining factor of the amazingly robust physical property of this unique biomaterial. It provides the ability to dissipate stress under loading and prevent mechanical failure. Evolutionary change in the biochemical composition and biomechanical properties of mammalian dentition is related to variations in the oral processing of different food materials.

13.
Chemosphere ; 337: 139357, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392801

RESUMEN

The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.


Asunto(s)
Cadmio , Durapatita , Durapatita/química , Cadmio/química , Fósforo , Adsorción
14.
J Hazard Mater ; 445: 130334, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36462243

RESUMEN

Thermoacidophilic Cyanidiales maintain a competitive edge in inhabiting extreme environments enriched with metals. Here, species of Cyanidioschyzon merolae (Cm), Cyanidium caldarium (Cc), and Galdieria partita (Gp) were exploited to remove hexavalent chromium [Cr(VI)]. Cm and Gp could remove 168.1 and 93.7 mg g-1 of Cr(VI) at pH 2.0 and 7.0, respectively, wherein 89% and 62% of sorbed Cr on Cm and Gp occurred as trivalent chromium [Cr(III)]. Apart from surface-sorbed Cr(VI), the in vitro Cr(III) bound with polysaccharide and in vivo chromium(III) hydroxide [Cr(OH)3] attested to the reduction capability of Cyanidiales. The distribution of Cr species varied as a function of sorbed Cr amount, yet a relatively consistent proportion of Cr(OH)3, irrespective of Cr sorption capacity, was found only on Cm and Cc at pH 2.0. In conjunction with TXM (transmission X-ray microscopy) images that showed less impaired cell integrity and possible intracellular Cr distribution on Cm and Cc at pH 2.0, the in vivo Cr(OH)3 might be the key to promoting the Cr sorption capacity (≥ 152 mg g-1). Cyanidiales are promising candidates for the green and sustainable remediation of Cr(VI) due to their great removal capacity, the spontaneous reduction under oxic conditions, and in vivo accumulation.


Asunto(s)
Cromo , Microscopía , Adsorción
15.
ACS Nano ; 17(11): 10181-10190, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37212535

RESUMEN

Modern infrared (IR) microscopy, communication, and sensing systems demand control of the spectral characteristics and polarization states of light. Typically, these systems require the cascading of multiple filters, polarization optics, and rotating components to manipulate light, inevitably increasing their sizes and complexities. Here, we report two-terminal mid-infrared (mid-IR) emitters, in which tuning the polarity of the applied bias can switch their emission peak wavelengths and linear polarization states along two orthogonal orientations. Our devices are composed of two back-to-back p-n junctions formed by stacking anisotropic light-emitting materials, black phosphorus and black arsenic-phosphorus with MoS2. By controlling the crystallographic orientations and engineering the band profile of heterostructures, the emissions of two junctions exhibit distinct spectral ranges and polarization directions; more importantly, these two electroluminescence (EL) units can be independently activated, depending on the polarity of the applied bias. Furthermore, we show that when operating our emitter under the polarity-switched pulse mode, the time-averaged EL exhibits the characteristics of broad spectral coverage, encompassing the entire first mid-IR atmospheric window (λ: 3-5 µm), and electrically tunable spectral shapes.

16.
Biol Lett ; 8(3): 434-7, 2012 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-22090199

RESUMEN

The endosymbiotic relationship between coral hosts and dinoflagellates of the genus Symbiodinium is critical for the growth and productivity of coral reef ecosystems. Here, synchrotron radiation-based infrared microspectroscopy was applied to examine metabolite concentration differences between endosymbiotic (within the anemone Aiptasia pulchella) and free-living Symbiodinium over the light-dark cycle. Significant differences in levels of lipids, nitrogenous compounds, polysaccharides and putative cell wall components were documented. Compared with free-living Symbiodinium, total lipids, unsaturated lipids and polysaccharides were relatively enriched in endosymbiotic Symbiodinium during both light and dark photoperiods. Concentrations of cell wall-related metabolites did not vary temporally in endosymbiotic samples; in contrast, the concentrations of these metabolites increased dramatically during the dark photoperiod in free-living samples, possibly reflecting rhythmic cell-wall synthesis related to light-driven cell proliferation. The level of nitrogenous compounds in endosymbiotic cells did not vary greatly across the light-dark cycle and in general was significantly lower than that observed in free-living samples collected during the light. Collectively, these data suggest that nitrogen limitation is a factor that the host cell exploits to induce the biosynthesis of lipids and polysaccharides in endosymbiotic Symbiodinium.


Asunto(s)
Dinoflagelados/fisiología , Anémonas de Mar/fisiología , Simbiosis , Animales , Dinoflagelados/clasificación , Microespectrofotometría , Fotoperiodo , Anémonas de Mar/citología , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Factores de Tiempo
17.
PeerJ ; 10: e12919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251779

RESUMEN

Avians have evolved many different modes of flying as well as various types of feathers for adapting to varied environments. However, the protein content and ratio of protein secondary structures (PSSs) in mature flight feathers are less understood. Further research is needed to understand the proportions of PSSs in feather shafts adapted to various flight modes in different avian species. Flight feathers were analyzed in chicken, mallard, sacred ibis, crested goshawk, collared scops owl, budgie, and zebra finch to investigate the PSSs that have evolved in the feather cortex and medulla by using nondestructive attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). In addition, synchrotron radiation-based, Fourier transform infrared microspectroscopy (SR-FTIRM) was utilized to measure and analyze cross-sections of the feather shafts of seven bird species at a high lateral resolution to resolve the composition of proteins distributed within the sampled area of interest. In this study, significant amounts of α-keratin and collagen components were observed in flight feather shafts, suggesting that these proteins play significant roles in the mechanical strength of flight feathers. This investigation increases our understanding of adaptations to flight by elucidating the structural and mechanistic basis of the feather composition.


Asunto(s)
Pájaros Cantores , Estrigiformes , Animales , Plumas/metabolismo , Pollos , Queratinas/metabolismo
18.
Sci Rep ; 12(1): 17168, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229592

RESUMEN

Neuroendocrine neoplasm (NEN) is a common gastrointestinal (GI) tract tumor divided into the neuroendocrine tumor (NET) and neuroendocrine carcinoma (NEC) according to mitosis and Ki-67 index. However, the objective discordance between interobserver may cause unsuitable diagnosis and misleading treatment. Nowadays, aberrant glycosylation of glycoconjugates inducing further populations of elongated complex oligosaccharide covalent attached to glycoconjugates anchored in the cell membrane by neo-synthesis of cancer-associated alteration of carbohydrate determinants were observed during cancer development. This study aimed to demonstrate the wax physisorption kinetics coupled with Fourier transform infrared (WPK-FTIR) imaging between NET and NEC in the rectum, colon, and stomach by utilizing two wax reagents (beeswax and paraplast) as glycan adsorbents for physical binding glycans of glycoconjugates based on dipole-induced dipole interaction. Results showed greater physisorption with beeswax than that of paraplast, suggesting highly populated elongated glycans of glycoconjugates adhering onto the tumor surfaces of NETs than that of adjacent benign mucosa in the rectum and colon. Besides, the WPK results of gastric NEN tissue sections showed a higher infrared absorbance ratio of beeswax-remnant to paraplast-remnant remains onto the tissue sections referring to a higher population of elongated glycans in gastric NET as compared with that of gastric NEC. Based on our findings, different anatomical locations could share similar phenomena with minor variance. In conclusion, WPK-FTIR imaging may have the potential to be employed as an alternative diagnostic method in GI NENs in the future.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias Gastrointestinales , Neoplasias Intestinales , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Carcinoma Neuroendocrino/patología , Neoplasias Gastrointestinales/diagnóstico por imagen , Neoplasias Gastrointestinales/patología , Humanos , Neoplasias Intestinales/patología , Antígeno Ki-67/metabolismo , Cinética , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/metabolismo , Neoplasias Pancreáticas/patología , Polisacáridos , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias Gástricas/patología
19.
Environ Geochem Health ; 33(3): 235-58, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20706862

RESUMEN

Humic substances in groundwater and aquifer sediments from the arsenicosis and Blackfoot disease (BFD) affected areas in Bangladesh (Bengal delta plain) and Taiwan (Lanyang plain and Chianan plain) were characterized using fluorescence spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The results demonstrate that the mean concentration of As and relative intensity of fluorescent humic substances are higher in the Chianan plain groundwater than those in the Lanyang plain and Bengal delta plain groundwater. The mean As concentrations in Bengal delta plain, Chianan plain, and Lanyang plain are 50.65 µg/l (2.8-170.8 µg/l, n=20), 393 µg/l (9-704 µg/l, n=5), and 104.5 µg/l (2.51-543 µg/l, n = 6), respectively. Average concentrations and relative fluorescent intensity of humic substances in groundwater are 25.381 QSU (quinine standard unit) and 17.78 in the Bengal delta plain, 184.032 QSU and 128.41 in the Chianan plain, and 77.56 QSU and 53.43 in the Lanyang plain. Moreover, FT-IR analysis shows that the humic substances extracted from the Chianan plain groundwater contain phenolic, alkanes, aromatic ring and amine groups, which tend to form metal carbon bonds with As and other trace elements. By contrast, the spectra show that humic substances are largely absent from sediments and groundwater in the Bengal delta plain and Lanyang plain. The data suggest that the reductive dissolution of As-adsorbed Mn oxyhydroxides is the most probable mechanism for mobilization of As in the Bengal delta plain. However, in the Chianan plain and Lanyang plain, microbially mediated reductive dissolution of As-adsorbed amorphous/crystalline Fe oxyhydroxides in organic-rich sediments is the primary mechanism for releasing As to groundwater. High levels of As and humic substances possibly play a critical role in causing the unique BFD in the Chianan plain of SW Taiwan.


Asunto(s)
Arsénico/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Sustancias Húmicas/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Arsénico/toxicidad , Bangladesh , Enfermedades del Pie/etiología , Gangrena/etiología , Sustancias Húmicas/toxicidad , Metales Pesados/análisis , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Taiwán , Abastecimiento de Agua/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-21879855

RESUMEN

Arsenic (As) enrichment in groundwater has led to extensive research, particularly on the factors responsible for its release into groundwater. In the Gangetic plain, organic matter driven microbial reduction of Fe-oxyhydroxides is considered as the most plausible mechanism of As release into groundwater. However, the role of organic matter in the aqueous environment is not well known and particularly that of organometallic complex. In this study, we have characterized bulk sediment and groundwater samples, collected from Barasat, West Bengal, India, to understand the effect of organic matter in the binding and mobility of As in the subsurface environment. The results showed a moderate correlation (R(2) = 0.49, p < 0.05) between dissolved organic carbon (DOC) and As in groundwater, suggesting that DOC has a role in releasing As into groundwater. The relative fluorescent intensity (RFI) of the dissolved humic substances in groundwater showed a maximum value of 65 QSU (mean: 47 ± 8 QSU). FT-IR spectra of the extracted humic acid fractions of the sediment showed COO-, C = O, OH, and C = C (aromatic ring) functional groups, which may act as a chelating agents with the metal(loid)s. FT-IR spectra of the HA-As complex exhibited specific peaks at 1242 and 832 cm(-1) in the fingerprint region. This is similar to the extracted humic acid fractions of the Gangetic sediment, suggesting binding of As with humic substances.


Asunto(s)
Arsénico/química , Sedimentos Geológicos/química , Agua Subterránea/química , Sustancias Húmicas/análisis , Compuestos Orgánicos/química , Arsénico/análisis , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , India , Metales/análisis , Metales/química , Compuestos Orgánicos/análisis , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA