Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 93: 36-51, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156344

RESUMEN

Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias , Humanos , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/farmacología , Adipocitos/metabolismo , Obesidad/complicaciones , Citocinas/metabolismo , Neoplasias/metabolismo , Carcinogénesis/metabolismo , Microambiente Tumoral
2.
Circ Res ; 127(6): 778-792, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32495699

RESUMEN

RATIONALE: The HDL (high-density lipoprotein)-mediated stimulation of cellular cholesterol efflux initiates macrophage-specific reverse cholesterol transport (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL (low-density lipoprotein) particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity. However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. OBJECTIVE: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. METHODS AND RESULTS: Macrophage cholesterol efflux induced in vitro by LDL added to the culture media either alone or together with HDL or ex vivo by plasma derived from subjects with familial hypercholesterolemia was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP (cholesteryl ester transfer protein) and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL cholesterol efflux capacity in the familial hypercholesterolemia plasma. The m-RCT rates of the LDLr (LDL receptor)-KO (knockout), LDLr-KO/APOB100, and PCSK9 (proprotein convertase subtilisin/kexin type 9)-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in HAPOB100 Tg (human APOB100 transgenic) mice with fully functional LDLr, despite increased levels of plasma APO (apolipoprotein)-B-containing lipoproteins. CONCLUSIONS: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI (scavenger receptor class B type 1) to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
HDL-Colesterol/sangre , LDL-Colesterol/sangre , Hiperlipoproteinemia Tipo II/sangre , Hígado/metabolismo , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Animales , Apolipoproteína B-100/sangre , Apolipoproteína B-100/genética , Transporte Biológico , Línea Celular , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Modelos Animales de Enfermedad , Heces/química , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/genética , Receptores Depuradores de Clase B/metabolismo
3.
J Lipid Res ; 59(6): 945-957, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29581158

RESUMEN

ApoA-I, the main structural and functional protein of HDL particles, is cardioprotective, but also highly sensitive to proteolytic cleavage. Here, we investigated the effect of cardiac mast cell activation and ensuing chymase secretion on apoA-I degradation using isolated rat hearts in the Langendorff perfusion system. Cardiac mast cells were activated by injection of compound 48/80 into the coronary circulation or by low-flow myocardial ischemia, after which lipid-free apoA-I was injected and collected in the coronary effluent for cleavage analysis. Mast cell activation by 48/80 resulted in apoA-I cleavage at sites Tyr192 and Phe229, but hypoxic activation at Tyr192 only. In vitro, the proteolytic end-product of apoA-I with either rat or human chymase was the Tyr192-truncated fragment. This fragment, when compared with intact apoA-I, showed reduced ability to promote migration of cultured human coronary artery endothelial cells in a wound-healing assay. We propose that C-terminal truncation of apoA-I by chymase released from cardiac mast cells during ischemia impairs the ability of apoA-I to heal damaged endothelium in the ischemic myocardium.


Asunto(s)
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Quimasas/metabolismo , Mastocitos/citología , Miocardio/citología , Proteolisis , Tirosina , Animales , Hipoxia de la Célula , Movimiento Celular , Células Endoteliales/citología , Células Endoteliales/patología , Femenino , Humanos , Mastocitos/enzimología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocardio/patología , Ratas , Ratas Wistar
4.
Lipids Health Dis ; 17(1): 285, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545366

RESUMEN

BACKGROUND: The focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation. METHODS: We used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols. RESULTS: We show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1ß and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner. CONCLUSIONS: Our findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.


Asunto(s)
HDL-Colesterol/genética , Colesterol/genética , Lipoproteínas HDL/genética , Factores Estimuladores hacia 5'/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Quimiocina CCL2/genética , Colesterol/sangre , Expresión Génica/genética , Humanos , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Resistencia a la Insulina/genética , Lipoproteínas HDL/sangre , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/sangre , Obesidad/genética , Obesidad/patología
5.
Biochim Biophys Acta ; 1861(7): 566-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26968096

RESUMEN

Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.


Asunto(s)
Aterosclerosis/metabolismo , HDL-Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Transporte Biológico , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Lipasa/genética , Lipasa/metabolismo , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Especificidad de la Especie
6.
Arterioscler Thromb Vasc Biol ; 36(2): 274-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26681753

RESUMEN

OBJECTIVE: Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS: Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1ß, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS: The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.


Asunto(s)
Apolipoproteína A-I/metabolismo , Aterosclerosis/enzimología , Quimasas/metabolismo , Células Endoteliales/metabolismo , Inflamación/enzimología , Mastocitos/enzimología , Apolipoproteína A-I/farmacología , Aterosclerosis/inmunología , Aterosclerosis/prevención & control , Adhesión Celular , Línea Celular Tumoral , Colesterol/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/inmunología , Células Espumosas/inmunología , Células Espumosas/metabolismo , Humanos , Inflamación/inmunología , Inflamación/prevención & control , Mediadores de Inflamación/metabolismo , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , FN-kappa B/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Neutrófilos/metabolismo , Péptidos/farmacología , Estructura Terciaria de Proteína , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Migración Transendotelial y Transepitelial , Molécula 1 de Adhesión Celular Vascular/metabolismo
7.
Curr Opin Lipidol ; 26(5): 362-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26339766

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to summarize evidence about the effects that mast cell mediators can exert on the cholesterol efflux-inducing function of high density lipoproteins (HDL). RECENT FINDINGS: Subendothelially located activated mast cells are present in inflamed tissue sites, in which macrophage foam cells are also present. Upon activation, mast cells degranulate and expel 2 major neutral proteases, chymase and tryptase, and the vasoactive compound histamine, all of which are bound to the heparin-proteoglycan matrix of the granules. In the extracellular fluid, the proteases remain heparin-bound and retain their activities, whereas histamine dissociates and diffuses away to reach the endothelium. The heparin-bound mast cell proteases avidly degrade lipid-poor HDL particles so preventing their ability to induce cholesterol efflux from macrophage foam cells. In contrast, histamine enhances the passage of circulating HDL through the vascular endothelium into interstitial fluids, so favoring HDL interaction with peripheral macrophage foam cells and accelerating initiation of macrophage-specific reverse cholesterol transport. SUMMARY: Mast cells exert various modulatory effects on HDL function. In this novel tissue cholesterol-regulating function, the functional balance of histamine and proteases, and the relative quantities of HDL particles in the affected microenvironment ultimately dictate the outcome of the multiple mast cell effects on tissue cholesterol content.


Asunto(s)
Aterosclerosis/inmunología , Lipoproteínas HDL/metabolismo , Mastocitos/fisiología , Animales , Aterosclerosis/metabolismo , Permeabilidad Capilar , Colesterol/metabolismo , Humanos , Metabolismo de los Lípidos , Proteolisis
8.
J Lipid Res ; 56(2): 203-14, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25424004

RESUMEN

Atherosclerotic lesions are often hypoxic and exhibit elevated lactate concentrations and local acidification of the extracellular fluids. The acidification may be a consequence of the abundant accumulation of lipid-scavenging macrophages in the lesions. Activated macrophages have a very high energy demand and they preferentially use glycolysis for ATP synthesis even under normoxic conditions, resulting in enhanced local generation and secretion of lactate and protons. In this review, we summarize our current understanding of the effects of acidic extracellular pH on three key players in atherogenesis: macrophages, apoB-containing lipoproteins, and HDL particles. Acidic extracellular pH enhances receptor-mediated phagocytosis and antigen presentation by macrophages and, importantly, triggers the secretion of proinflammatory cytokines from macrophages through activation of the inflammasome pathway. Acidity enhances the proteolytic, lipolytic, and oxidative modifications of LDL and other apoB-containing lipoproteins, and strongly increases their affinity for proteoglycans, and may thus have major effects on their retention and the ensuing cellular responses in the arterial intima. Finally, the decrease in the expression of ABCA1 at acidic pH may compromise cholesterol clearance from atherosclerotic lesions. Taken together, acidic extracellular pH amplifies the proatherogenic and proinflammatory processes involved in atherogenesis.


Asunto(s)
Aterosclerosis/metabolismo , Túnica Íntima/metabolismo , Animales , Apolipoproteínas/metabolismo , Aterosclerosis/etiología , Humanos , Lipoproteínas/metabolismo , Fosfolipasas/metabolismo , Proteoglicanos/metabolismo
9.
J Lipid Res ; 56(2): 241-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25473102

RESUMEN

Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.


Asunto(s)
HDL-Colesterol/sangre , Colesterol/metabolismo , Lipoproteínas HDL/sangre , Animales , Transporte Biológico/fisiología , Bradiquinina/metabolismo , Línea Celular , Células Espumosas/metabolismo , Histamina/metabolismo , Lipoproteínas/metabolismo , Ratones , Ratones Endogámicos C57BL
10.
Circ Res ; 111(11): 1459-69, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22931956

RESUMEN

RATIONALE: Psychological stress is associated with an increased risk of cardiovascular diseases. However, the connecting mechanisms of the stress-inducing activation of the hypothalamic-pituitary-adrenal axis with atherosclerosis are not well-understood. OBJECTIVE: To study the effect of acute psychological stress on reverse cholesterol transport (RCT), which transfers peripheral cholesterol to the liver for its ultimate fecal excretion. METHODS AND RESULTS: C57Bl/6J mice were exposed to restraint stress for 3 hours to induce acute psychological stress. RCT in vivo was quantified by measuring the transfer of [(3)H]cholesterol from intraperitoneally injected mouse macrophages to the lumen of the small intestine within the stress period. Surprisingly, stress markedly increased the contents of macrophage-derived [(3)H]cholesterol in the intestinal lumen. In the stressed mice, intestinal absorption of [(14)C]cholesterol was significantly impaired, the intestinal mRNA expression level of peroxisome proliferator-activated receptor-α increased, and that of the sterol influx transporter Niemann-Pick C1-like 1 decreased. The stress-dependent effects on RCT rate and peroxisome proliferator-activated receptor-α gene expression were fully mimicked by administration of the stress hormone corticosterone (CORT) to nonstressed mice, and they were blocked by the inhibition of CORT synthesis in stressed mice. Moreover, the intestinal expression of Niemann-Pick C1-like 1 protein decreased when circulating levels of CORT increased. Of note, when either peroxisome proliferator-activated receptor α or liver X receptor α knockout mice were exposed to stress, the RCT rate remained unchanged, although plasma CORT increased. This indicates that activities of both transcription factors were required for the RCT-accelerating effect of stress. CONCLUSIONS: Acute psychological stress accelerated RCT by compromising intestinal cholesterol absorption. The present results uncover a novel functional connection between the hypothalamic-pituitary-adrenal axis and RCT that can be triggered by a stress-induced increase in circulating CORT.


Asunto(s)
Colesterol/metabolismo , Corticosterona/sangre , Estrés Psicológico/fisiopatología , Enfermedad Aguda , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Línea Celular , Colesterol/farmacocinética , Corticosterona/farmacología , Femenino , Expresión Génica , Humanos , Absorción Intestinal/fisiología , Intestino Delgado/metabolismo , Lípidos/sangre , Hígado/metabolismo , Receptores X del Hígado , Macrófagos/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Eur J Clin Invest ; 43(4): 317-23, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23397902

RESUMEN

OBJECTIVE: Premenopausal women have a lower incidence of cardiovascular disease compared to men of the same age. Endogenous oestrogens, especially estradiol, presumably protect against atherosclerosis by a variety of mechanisms. Reverse cholesterol transport (RCT) mechanisms also provide protection against this disease. RCT is defined as the removal of cholesterol from peripheral macrophage foam cells, via high-density lipoproteins (HDL), and cholesterol transportation to the liver for excretion. We have previously shown in a preliminary study that HDL, isolated from premenopausal women, enhanced macrophage cholesterol efflux compared to HDL derived from age-matched male subjects. MATERIALS AND METHODS: Here, we expanded this study by analysing a larger population of healthy volunteers and evaluated the capacity of HDL derived from women with high or low serum E2 concentrations, mainly representing premenopausal and postmenopausal women, respectively, or men (each group consisting of 30 subjects) to facilitate cholesterol removal from human THP-1 macrophages. HDL isolated from serum samples was incubated with [(3)H] cholesterol oleate-loaded macrophages for 16 h, after which cholesterol efflux to HDL was determined. RESULTS: No significant differences in the efflux-promoting ability of HDL existed among the three groups. Relevant plasma factors involved in further steps of RCT, such as cholesterol ester transfer protein (CETP), phospholipid transfer protein (PLTP) and lecithin:cholesterol acyltransferase (LCAT) activities were also analysed, but no differences were observed among the study groups. CONCLUSION: The results do not support a role for estradiol status or gender in modifying the initial step of RCT as a protective mechanism against cardiovascular disease.


Asunto(s)
Colesterol/metabolismo , Estradiol/sangre , Lipoproteínas HDL/metabolismo , Posmenopausia/metabolismo , Adulto , Anciano , Aterosclerosis/metabolismo , Transporte Biológico , Proteínas de Transferencia de Ésteres de Colesterol/sangre , Femenino , Homocisteína/sangre , Humanos , Macrófagos/metabolismo , Masculino , Persona de Mediana Edad , Posmenopausia/sangre , Factores Sexuales
12.
J Lipid Res ; 53(10): 2115-2125, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22855736

RESUMEN

HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL(2) and HDL(3) subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL(3) than in HDL(2). Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects.


Asunto(s)
Colesterol/metabolismo , Células Espumosas/metabolismo , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Apolipoproteína A-I/metabolismo , Quimasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno
13.
Arterioscler Thromb Vasc Biol ; 31(3): 520-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21212401

RESUMEN

OBJECTIVE: Chymase released by activated mast cells degrades high-density lipoproteins. We evaluated whether local activation of mast cells would attenuate cholesterol efflux from neighboring macrophage foam cells, thereby disrupting the entire in vivo pathway of macrophage-specific reverse cholesterol transport (RCT). METHODS AND RESULTS: C57Bl/6J mice received intraperitoneal injections of the mast cell-degranulating compound 48/80 to induce peritoneal mast cell activation, human apolipoprotein A-I (apoA-I) to stimulate RCT, and [(3)H]cholesterol-labeled J774 macrophages for measurement of the rate of RCT. After 3 hours, (3)H-radioactivity was measured in the intestinal lumen contents. Activation of mast cells in the peritoneal cavity depleted human apoA-I pre-ß-migrating species, impairing the ability of the peritoneal fluid to efficiently promote cholesterol efflux from cultured macrophages. Moreover, intact but not chymase-treated (proteolyzed) apoA-I accelerated the transfer of macrophage-derived (3)H- radioactivity to the intestinal contents. Importantly, stimulation of RCT by human apoA-I was fully blocked by 48/80 in mast cell-competent wild-type C57Bl/6J mice but not in mast cell-deficient W-sash c-kit mutant mice. The ability of intraperitoneally administered phospholipid vesicles to promote RCT in wild-type mice was not blocked by 48/80, supporting the notion that mast cell-dependent proteolysis of the intraperitoneally administered apoA-I was responsible for RCT inhibition. CONCLUSIONS: Overall, our results suggest that tissue-specific activation of mast cells with ensuing release of chymase is able to proteolytically inactivate apoA-I in the microenvironment of the activated mast cells, thus locally impairing the initiation of macrophage RCT in vivo.


Asunto(s)
Comunicación Celular , Degranulación de la Célula , Colesterol/metabolismo , Quimasas/metabolismo , Macrófagos/metabolismo , Mastocitos/enzimología , Animales , Apolipoproteína A-I/administración & dosificación , Apolipoproteína A-I/metabolismo , Transporte Biológico , Comunicación Celular/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Heces/química , Células Espumosas/metabolismo , Humanos , Inyecciones Intraperitoneales , Macrófagos/trasplante , Mastocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mutación , Fosfolípidos/administración & dosificación , Desnaturalización Proteica , Proteínas Proto-Oncogénicas c-kit/genética , Factores de Tiempo , Tritio , p-Metoxi-N-metilfenetilamina/administración & dosificación
14.
Curr Opin Lipidol ; 22(5): 394-402, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21881503

RESUMEN

PURPOSE OF REVIEW: Both quantity and quality of the circulating HDL particle matter for the optimal antiatherogenic potential of HDL. This review summarizes various mechanisms capable of inducing extracellular modifications of HDL and reducing the function of HDL subclasses as cholesterol acceptors. Special emphasis is laid on the proteolytic inactivation of lipid-poor preß-migrating HDL (preß-HDL). RECENT FINDINGS: HDL particles can undergo functional inactivation in vivo. During atherogenesis, different cell types in the arterial intima release enzymes into the intimal fluid, potentially capable of causing structural and chemical modifications of the various components present in the lipid core or in the polar surface of the HDL particles. Enzymatic oxidation, lipolysis and proteolysis, and nonenzymatic glycosylation are among the HDL modifications that adversely affect HDL functionality. Proteolysis of preß-HDL by various proteases present in the arterial intima has emerged as a potential mechanism that impairs the efficiency of HDL to promote cholesterol efflux from macrophage foam cells, the mast cell-derived neutral protease chymase being a prime example of such impairment. A paradigm of proteolytic inactivation of preß-HDL in vivo is emerging. SUMMARY: Several extracellular enzymes present in the arterial intima may compromise various cardioprotective functions of HDL. Observations on proteolysis of specific lipid-poor HDL subpopulations in vivo constitute the basis for future studies evaluating the actual impact of proteolytic microenvironments on the initiation and progression of atherosclerotic lesions.


Asunto(s)
Aterosclerosis/metabolismo , Lipoproteínas de Alta Densidad Pre-beta/metabolismo , Lipoproteínas HDL/metabolismo , Animales , Humanos , Proteolisis
15.
Front Cardiovasc Med ; 9: 777822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237673

RESUMEN

Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease.

16.
Arterioscler Thromb Vasc Biol ; 30(9): 1766-72, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20702810

RESUMEN

OBJECTIVE: In the deep microenvironments of advanced human atherosclerotic lesions, the intimal fluid becomes acidic. We examined the effect of an acidic extracellular pH on cholesterol removal (efflux) from primary human macrophages. METHODS AND RESULTS: When cholesterol efflux from acetyl-low-density lipoprotein-loaded macrophages to various cholesterol acceptors was evaluated at pH 7.5, 6.5, or 5.5, the lower the pH the more was cholesterol efflux reduced. The reduction of efflux to lipid-free apolipoprotein A-I was stronger than to high-density lipoprotein(2) or to plasma. Cholesterol efflux to every acceptor was severely compromised also at neutral pH when the macrophages had been loaded with cholesterol at acidic pH, or when both loading and efflux were carried out at acidic pH. Compatible with these observations, the typical upregulation of ABCA1 and ABCG1 mRNA levels in macrophages loaded with cholesterol at neutral pH was rapidly attenuated in acidic medium. The secondary structure of apolipoprotein A-I did not changed over the pH range studied, supporting the notion that the inhibitory effect of acidic pH on cholesterol efflux rather impaired the ability of the foam cells to facilitate ABCA1-mediated cholesterol release. Secretion of apolipoprotein E from the foam cells was fully inhibited when the pH was 5.5, which further reduced cholesterol efflux. CONCLUSIONS: An acidic pH reduces cholesterol efflux via different pathways and particularly impairs the function of the ABCA1 transporter. The pH-sensitive function of human macrophage foam cells in releasing cholesterol may accelerate lipid accumulation in deep areas of advanced atherosclerotic plaques where the intimal fluid is acidic.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Transporte Biológico , Células Cultivadas , Regulación hacia Abajo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Lipoproteínas HDL2/metabolismo , Lipoproteínas LDL/metabolismo , Estructura Secundaria de Proteína , ARN Mensajero/metabolismo
17.
Sci Rep ; 11(1): 4923, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649397

RESUMEN

In atherosclerotic lesions, blood-derived monocytes differentiate into distinct macrophage subpopulations, and further into cholesterol-filled foam cells under a complex milieu of cytokines, which also contains macrophage-colony stimulating factor (M-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF). Here we generated human macrophages in the presence of either M-CSF or GM-CSF to obtain M-MØ and GM-MØ, respectively. The macrophages were converted into cholesterol-loaded foam cells by incubating them with acetyl-LDL, and their atheroinflammatory gene expression profiles were then assessed. Compared with GM-MØ, the M-MØ expressed higher levels of CD36, SRA1, and ACAT1, and also exhibited a greater ability to take up acetyl-LDL, esterify cholesterol, and become converted to foam cells. M-MØ foam cells expressed higher levels of ABCA1 and ABCG1, and, correspondingly, exhibited higher rates of cholesterol efflux to apoA-I and HDL2. Cholesterol loading of M-MØ strongly suppressed the high baseline expression of CCL2, whereas in GM-MØ the low baseline expression CCL2 remained unchanged during cholesterol loading. The expression of TNFA, IL1B, and CXCL8 were reduced in LPS-activated macrophage foam cells of either subtype. In summary, cholesterol loading converged the CSF-dependent expression of key genes related to intracellular cholesterol balance and inflammation. These findings suggest that transformation of CSF-polarized macrophages into foam cells may reduce their atheroinflammatory potential in atherogenesis.


Asunto(s)
Colesterol/inmunología , Factores Estimulantes de Colonias/inmunología , Macrófagos , Monocitos , Linfocitos T , Aterosclerosis/inmunología , Células Cultivadas , Humanos , Inflamación/inmunología , Macrófagos/citología , Macrófagos/inmunología , Monocitos/citología , Monocitos/inmunología , Cultivo Primario de Células , Linfocitos T/citología , Linfocitos T/inmunología
18.
Atherosclerosis ; 312: 1-7, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32942042

RESUMEN

BACKGROUND AND AIMS: In focal areas of advanced human atherosclerotic lesions, the intimal fluid is acidic. An acidic medium impairs the ABCA1-mediated cholesterol efflux from macrophages, so tending to increase their content of free cholesterol, which is then available for esterification by the macrophage enzyme ACAT1. Here we investigated whether low extracellular pH would affect the activity of ACAT1. METHODS: - Human monocyte-derived macrophages were first incubated with acetyl-LDL at neutral and acidic conditions (pH 7.5, 6.5, and 5.5) to generate foam cells, and then the foam cells were incubated with [3H]oleate-BSA complexes, and the formation of [3H]oleate-labeled cholesteryl esters was measured. ACAT1 activity was also measured in cell-free macrophage extracts. RESULTS: - In acidic media, ACAT1-dependent cholesteryl [3H]oleate generation became compromised in the developing foam cells and their content of free cholesterol increased. In line with this finding, ACAT1 activity in the soluble cell-free fraction derived from macrophage foam cells peaked at pH 7, and gradually decreased under acidic pH with a rapid drop below pH 6.5. Incubation of macrophages under progressively more acidic conditions (until pH 5.5) lowered the cytosolic pH of macrophages (down to pH 6.0). Such intracellular acidification did not affect macrophage gene expression of ACAT1 or the neutral CEH. CONCLUSIONS: Exposure of human macrophage foam cells to acidic conditions lowers their intracellular pH with simultaneous decrease in ACAT1 activity. This reduces cholesterol esterification and thus leads to accumulation of potentially toxic levels of free cholesterol, a contributing factor to macrophage foam cell death.


Asunto(s)
Colesterol , Células Espumosas , Acetil-CoA C-Acetiltransferasa , Ésteres del Colesterol , Humanos , Concentración de Iones de Hidrógeno , Macrófagos
19.
Curr Med Chem ; 26(37): 6704-6723, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31438826

RESUMEN

Dietary phytosterols, which comprise plant sterols and stanols, reduce plasma Low-Density Lipoprotein-Cholesterol (LDL-C) levels when given 2 g/day. Since this dose has not been reported to cause health-related side effects in long-term human studies, food products containing these plant compounds are used as potential therapeutic dietary options to reduce LDL-C and cardiovascular disease risk. Several mechanisms have been proposed to explain the cholesterol-lowering action of phytosterols. They may compete with dietary and biliary cholesterol for micellar solubilization in the intestinal lumen, impairing intestinal cholesterol absorption. Recent evidence indicates that phytosterols may also regulate other pathways. Impaired intestinal cholesterol absorption is usually associated with reduced cholesterol transport to the liver, which may reduce the incorporation of cholesterol into Very-Low- Density Lipoprotein (VLDL) particles, thereby lowering the rate of VLDL assembly and secretion. Impaired liver VLDL production may reduce the rate of LDL production. On the other hand, significant evidence supports a role for plant sterols in the Transintestinal Cholesterol Excretion (TICE) pathway, although the exact mechanisms by which they promote the flow of cholesterol from the blood to enterocytes and the intestinal lumen remains unknown. Dietary phytosterols may also alter the conversion of bile acids into secondary bile acids, and may lower the bile acid hydrophobic/hydrophilic ratio, thereby reducing intestinal cholesterol absorption. This article reviews the progress to date in research on the molecular mechanisms underlying the cholesterol-lowering effects of phytosterols.


Asunto(s)
LDL-Colesterol/antagonistas & inhibidores , Fitosteroles/farmacología , Animales , Ácidos y Sales Biliares/antagonistas & inhibidores , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , LDL-Colesterol/química , LDL-Colesterol/metabolismo , Suplementos Dietéticos , Humanos , Estructura Molecular , Fitosteroles/administración & dosificación , Fitosteroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA