Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38917788

RESUMEN

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

2.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358469

RESUMEN

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenómica , Acetilación , Adulto , Anciano , Anciano de 80 o más Años , Análisis por Conglomerados , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Unión Proteica , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Ubiquitinación
3.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33212010

RESUMEN

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Terapia Molecular Dirigida , Proteogenómica , Desaminasas APOBEC/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Daño del ADN , Reparación del ADN , Femenino , Humanos , Inmunoterapia , Metabolómica , Persona de Mediana Edad , Mutagénesis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Proteína de Retinoblastoma/metabolismo , Microambiente Tumoral/inmunología
4.
Mol Cell Proteomics ; 23(2): 100707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154692

RESUMEN

Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples. One of the primary challenges associated with this technology is the relatively low rate of phosphopeptide identification during data analysis. This limitation hampers the full realization of the potential offered by shotgun phosphoproteomics. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19% to 46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.


Asunto(s)
Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Fosforilación , Fosfopéptidos/metabolismo , Proteómica
5.
Breast Cancer Res ; 24(1): 68, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258226

RESUMEN

BACKGROUND: Ductal carcinoma in situ (DCIS) is the most common type of in situ premalignant breast cancers. What drives DCIS to invasive breast cancer is unclear. Basal-like invasive breast cancers are aggressive. We have previously shown that NRAS is highly expressed selectively in basal-like subtypes of invasive breast cancers and can promote their growth and progression. In this study, we investigated whether NRAS expression at the DCIS stage can control transition from luminal DCIS to basal-like invasive breast cancers. METHODS: Wilcoxon rank-sum test was performed to assess expression of NRAS in DCIS compared to invasive breast tumors in patients. NRAS mRNA levels were also determined by fluorescence in situ hybridization in patient tumor microarrays (TMAs) with concurrent normal, DCIS, and invasive breast cancer, and association of NRAS mRNA levels with DCIS and invasive breast cancer was assessed by paired Wilcoxon signed-rank test. Pearson's correlation was calculated between NRAS mRNA levels and basal biomarkers in the TMAs, as well as in patient datasets. RNA-seq data were generated in cell lines, and unsupervised hierarchical clustering was performed after combining with RNA-seq data from a previously published patient cohort. RESULTS: Invasive breast cancers showed higher NRAS mRNA levels compared to DCIS samples. These NRAShigh lesions were also enriched with basal-like features, such as basal gene expression signatures, lower ER, and higher p53 protein and Ki67 levels. We have shown previously that NRAS drives aggressive features in DCIS-like and basal-like SUM102PT cells. Here, we found that NRAS-silencing induced a shift to a luminal gene expression pattern. Conversely, NRAS overexpression in the luminal DCIS SUM225 cells induced a basal-like gene expression pattern, as well as an epithelial-to-mesenchymal transition signature. Furthermore, these cells formed disorganized mammospheres containing cell masses with an apparent reduction in adhesion. CONCLUSIONS: These data suggest that elevated NRAS levels in DCIS are not only a marker but can also control the emergence of basal-like features leading to more aggressive tumor activity, thus supporting the therapeutic hypothesis that targeting NRAS and/or downstream pathways may block disease progression for a subset of DCIS patients with high NRAS.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Carcinoma Ductal de Mama/patología , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/patología , Hibridación Fluorescente in Situ , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , ARN Mensajero , Progresión de la Enfermedad , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
6.
Nature ; 534(7605): 55-62, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251275

RESUMEN

Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Genómica , Mutación/genética , Proteómica , Transducción de Señal , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/enzimología , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Deleción Cromosómica , Cromosomas Humanos Par 5/genética , Fosfatidilinositol 3-Quinasa Clase I , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Espectrometría de Masas , Anotación de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/genética , Fosfoproteínas/análisis , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Proteína p53 Supresora de Tumor/genética , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
7.
Br J Cancer ; 125(1): 1-3, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33767418

RESUMEN

Precision oncology has largely been driven by genomic profiling, but success so far has been limited. By combining genomic and proteomic analyses of tumours, proteogenomics holds promise in providing deeper mechanistic insights and generating therapeutic hypotheses to better match patients to targeted treatments than analysing each 'ome in isolation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Proteogenómica/métodos , Antineoplásicos/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisión
8.
Proc Natl Acad Sci U S A ; 115(51): E11978-E11987, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30498031

RESUMEN

A Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomic analysis prioritized dihydropyrimidinase-like-3 (DPYSL3) as a multilevel (RNA/protein/phosphoprotein) expression outlier specific to the claudin-low (CLOW) subset of triple-negative breast cancers. A PubMed informatics tool indicated a paucity of data in the context of breast cancer, which further prioritized DPYSL3 for study. DPYSL3 knockdown in DPYSL3-positive ([Formula: see text]) CLOW cell lines demonstrated reduced proliferation, yet enhanced motility and increased expression of epithelial-to-mesenchymal transition (EMT) markers, suggesting that DPYSL3 is a multifunctional signaling modulator. Slower proliferation in DPYSL3-negative ([Formula: see text]) CLOW cells was associated with accumulation of multinucleated cells, indicating a mitotic defect that was associated with a collapse of the vimentin microfilament network and increased vimentin phosphorylation. DPYSL3 also suppressed the expression of EMT regulators SNAIL and TWIST and opposed p21 activated kinase 2 (PAK2)-dependent migration. However, these EMT regulators in turn induce DPYSL3 expression, suggesting that DPYSL3 participates in negative feedback on EMT. In conclusion, DPYSL3 expression identifies CLOW tumors that will be sensitive to approaches that promote vimentin phosphorylation during mitosis and inhibitors of PAK signaling during migration and EMT.


Asunto(s)
Neoplasias de la Mama/metabolismo , Movimiento Celular/fisiología , Claudinas/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Mitosis/fisiología , Proteínas Musculares/metabolismo , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Proteínas Musculares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteogenómica , Proteómica , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Quinasas p21 Activadas/metabolismo
9.
Mol Cancer Ther ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781103

RESUMEN

Endocrine therapies (ET) with CDK4/6 inhibition are the standard treatment for estrogen receptor-α-positive (ER+) breast cancer, however drug resistance is common. In this study, proteogenomic analyses of 22 ER+ breast cancer patient-derived xenografts (PDXs) demonstrated that PKMYT1, a WEE1 homolog, is estradiol (E2) regulated in E2-dependent PDXs and constitutively expressed when growth is E2-independent. In clinical samples, high PKMYT1 mRNA levels associated with resistance to both ET and CDK4/6 inhibition. The PKMYT1 inhibitor lunresertib (RP-6306) with gemcitabine selectively and synergistically reduced the viability of ET and palbociclib-resistant ER+ breast cancer cells without functional p53. In vitro the combination increased DNA damage and apoptosis. In palbociclib-resistant, TP53 mutant PDX organoids and xenografts, RP-6306 with low-dose gemcitabine induced greater tumor volume reduction compared to treatment with either single agent. Our study demonstrates the clinical potential of RP-6306 in combination with gemcitabine for ET and CDK4/6 inhibitor resistant TP53 mutant ER+ breast cancer.

10.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711982

RESUMEN

Shotgun phosphoproteomics enables high-throughput analysis of phosphopeptides in biological samples, but low phosphopeptide identification rate in data analysis limits the potential of this technology. Here we present DeepRescore2, a computational workflow that leverages deep learning-based retention time and fragment ion intensity predictions to improve phosphopeptide identification and phosphosite localization. Using a state-of-the-art computational workflow as a benchmark, DeepRescore2 increases the number of correctly identified peptide-spectrum matches by 17% in a synthetic dataset and identifies 19%-46% more phosphopeptides in biological datasets. In a liver cancer dataset, 30% of the significantly altered phosphosites between tumor and normal tissues and 60% of the prognosis-associated phosphosites identified from DeepRescore2-processed data could not be identified based on the state-of-the-art workflow. Notably, DeepRescore2-processed data uniquely identifies EGFR hyperactivation as a new target in poor-prognosis liver cancer, which is validated experimentally. Integration of deep learning prediction in DeepRescore2 improves phosphopeptide identification and facilitates biological discoveries.

11.
Cell Syst ; 14(9): 777-787.e5, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37619559

RESUMEN

By combining mass-spectrometry-based proteomics and phosphoproteomics with genomics, epi-genomics, and transcriptomics, proteogenomics provides comprehensive molecular characterization of cancer. Using this approach, the Clinical Proteomic Tumor Analysis Consortium (CPTAC) has characterized over 1,000 primary tumors spanning 10 cancer types, many with matched normal tissues. Here, we present LinkedOmicsKB, a proteogenomics data-driven knowledge base that makes consistently processed and systematically precomputed CPTAC pan-cancer proteogenomics data available to the public through ∼40,000 gene-, protein-, mutation-, and phenotype-centric web pages. Visualization techniques facilitate efficient exploration and reasoning of complex, interconnected data. Using three case studies, we illustrate the practical utility of LinkedOmicsKB in providing new insights into genes, phosphorylation sites, somatic mutations, and cancer phenotypes. With precomputed results of 19,701 coding genes, 125,969 phosphosites, and 256 genotypes and phenotypes, LinkedOmicsKB provides a comprehensive resource to accelerate proteogenomics data-driven discoveries to improve our understanding and treatment of human cancer. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Proteómica , Proteogenómica/métodos , Genómica , Neoplasias/genética , Bases del Conocimiento
12.
Sci Adv ; 9(26): eadf2860, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390209

RESUMEN

Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Anciano , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Factor de Crecimiento Epidérmico , Ciclo Celular/genética , División Celular , Mutación , Receptores de Estrógenos
13.
Cancer Res Commun ; 3(8): 1551-1563, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37587913

RESUMEN

Triple-negative breast cancer (TNBC) constitutes 10%-15% of all breast tumors. The current standard of care is multiagent chemotherapy, which is effective in only a subset of patients. The original objective of this study was to deploy a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) to identify kinases elevated in non-pCR (pathologic complete response) cases for therapeutic targeting. Frozen optimal cutting temperature compound-embedded core needle biopsies were obtained from 43 patients with TNBC before docetaxel- and carboplatin-based neoadjuvant chemotherapy. KIPA was applied to the native tumor lysates that were extracted from samples with high tumor content. Seven percent of all identified proteins were kinases, and none were significantly associated with lack of pCR. However, among a large population of "off-target" purine-binding proteins (PBP) identified, seven were enriched in pCR-associated samples (P < 0.01). In orthogonal mRNA-based TNBC datasets, this seven-gene "PBP signature" was associated with chemotherapy sensitivity and favorable clinical outcomes. Functional annotation demonstrated IFN gamma response, nuclear import of DNA repair proteins, and cell death associations. Comparisons with standard tandem mass tagged-based discovery proteomics performed on the same samples demonstrated that KIPA-nominated pCR biomarkers were unique to the platform. KIPA is a novel biomarker discovery tool with unexpected utility for the identification of PBPs related to cytotoxic drug response. The PBP signature has the potential to contribute to clinical trials designed to either escalate or de-escalate therapy based on pCR probability. Significance: The identification of pretreatment predictive biomarkers for pCR in response to neoadjuvant chemotherapy would advance precision treatment for TNBC. To complement standard proteogenomic discovery profiling, a KIPA was deployed and unexpectedly identified a seven-member non-kinase PBP pCR-associated signature. Individual members served diverse pathways including IFN gamma response, nuclear import of DNA repair proteins, and cell death.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Proteínas Portadoras , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Antineoplásicos/farmacología , Docetaxel , Purinas
14.
Artículo en Inglés | MEDLINE | ID: mdl-37137501

RESUMEN

The goal of precision oncology is to translate the molecular features of cancer into predictive and prognostic tests that can be used to individualize treatment leading to improved outcomes and decreased toxicity. Success for this strategy in breast cancer is exemplified by efficacy of trastuzumab in tumors overexpressing ERBB2 and endocrine therapy for tumors that are estrogen receptor positive. However, other effective treatments, including chemotherapy, immune checkpoint inhibitors, and CDK4/6 inhibitors are not associated with strong predictive biomarkers. Proteomics promises another tier of information that, when added to genomic and transcriptomic features (proteogenomics), may create new opportunities to improve both treatment precision and therapeutic hypotheses. Here, we review both mass spectrometry-based and antibody-dependent proteomics as complementary approaches. We highlight how these methods have contributed toward a more complete understanding of breast cancer and describe the potential to guide diagnosis and treatment more accurately.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteoma , Medicina de Precisión , Resultado del Tratamiento , Pronóstico
15.
Cancer Res ; 83(19): 3237-3251, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071495

RESUMEN

Transcriptionally active ESR1 fusions (ESR1-TAF) are a potent cause of breast cancer endocrine therapy (ET) resistance. ESR1-TAFs are not directly druggable because the C-terminal estrogen/anti-estrogen-binding domain is replaced with translocated in-frame partner gene sequences that confer constitutive transactivation. To discover alternative treatments, a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) was deployed to identify druggable kinases that are upregulated by diverse ESR1-TAFs. Subsequent explorations of drug sensitivity validated RET kinase as a common therapeutic vulnerability despite remarkable ESR1-TAF C-terminal sequence and structural diversity. Organoids and xenografts from a pan-ET-resistant patient-derived xenograft model that harbors the ESR1-e6>YAP1 TAF were concordantly inhibited by the selective RET inhibitor pralsetinib to a similar extent as the CDK4/6 inhibitor palbociclib. Together, these findings provide preclinical rationale for clinical evaluation of RET inhibition for the treatment of ESR1-TAF-driven ET-resistant breast cancer. SIGNIFICANCE: Kinome analysis of ESR1 translocated and mutated breast tumors using drug bead-based mass spectrometry followed by drug-sensitivity studies nominates RET as a therapeutic target. See related commentary by Wu and Subbiah, p. 3159.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Receptor alfa de Estrógeno/genética , Antineoplásicos/uso terapéutico , Modelos Animales de Enfermedad , Mutación
16.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37501682

RESUMEN

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Asunto(s)
Neoplasias de la Mama , Proteogenómica , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neurofibromina 1/genética , Fulvestrant/farmacología , Receptores de Estrógenos/genética , Inhibidores de Proteínas Quinasas/farmacología , Factores de Transcripción NFI , ARN Mensajero , Quinasas de Proteína Quinasa Activadas por Mitógenos
17.
iScience ; 26(1): 105799, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36619972

RESUMEN

Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.

18.
Cancer Cell ; 41(8): 1397-1406, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37582339

RESUMEN

The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) investigates tumors from a proteogenomic perspective, creating rich multi-omics datasets connecting genomic aberrations to cancer phenotypes. To facilitate pan-cancer investigations, we have generated harmonized genomic, transcriptomic, proteomic, and clinical data for >1000 tumors in 10 cohorts to create a cohesive and powerful dataset for scientific discovery. We outline efforts by the CPTAC pan-cancer working group in data harmonization, data dissemination, and computational resources for aiding biological discoveries. We also discuss challenges for multi-omics data integration and analysis, specifically the unique challenges of working with both nucleotide sequencing and mass spectrometry proteomics data.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Proteómica , Genómica , Neoplasias/genética , Perfilación de la Expresión Génica
19.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567170

RESUMEN

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Asunto(s)
Neoplasias Endometriales , Metformina , Proteogenómica , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Estudios Prospectivos , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Metformina/farmacología
20.
J Biol Chem ; 286(46): 40091-103, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21965659

RESUMEN

Eosinophils are multifunctional leukocytes implicated in the pathogenesis of numerous inflammatory diseases including allergic asthma and hypereosinophilic syndrome. Eosinophil physiology is critically dependent on IL-5 and the IL-5 receptor (IL-5R), composed of a ligand binding α chain (IL-5Rα), and a common ß chain, ßc. Previously, we demonstrated that the ßc cytoplasmic tail is ubiquitinated and degraded by proteasomes following IL-5 stimulation. However, a complete understanding of the role of ßc ubiquitination in IL-5R biology is currently lacking. By using a well established, stably transduced HEK293 cell model system, we show here that in the absence of ubiquitination, ßc subcellular localization, IL-5-induced endocytosis, turnover, and IL-5R signaling were significantly impaired. Whereas ubiquitinated IL-5Rs internalized into trafficking endosomes for their degradation, ubiquitination-deficient IL-5Rs accumulated on the cell surface and displayed blunted signaling even after IL-5 stimulation. Importantly, we identified a cluster of three membrane-proximal ßc lysine residues (Lys(457), Lys(461), and Lys(467)) whose presence was required for both JAK1/2 binding to ßc and receptor ubiquitination. These findings establish that JAK kinase binding to ßc requires the presence of three critical ßc lysine residues, and this binding event is essential for receptor ubiquitination, endocytosis, and signaling.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas/metabolismo , Endocitosis/fisiología , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Lisina/metabolismo , Transducción de Señal/fisiología , Ubiquitinación/fisiología , Subunidad beta Común de los Receptores de Citocinas/genética , Endosomas/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Janus Quinasa 1/genética , Janus Quinasa 2/genética , Lisina/genética , Unión Proteica/fisiología , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA