Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Transl Med ; 22(1): 434, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720370

RESUMEN

BACKGROUND: Cardiometabolic disorders pose significant health risks globally. Metabolic syndrome, characterized by a cluster of potentially reversible metabolic abnormalities, is a known risk factor for these disorders. Early detection and intervention for individuals with metabolic abnormalities can help mitigate the risk of developing more serious cardiometabolic conditions. This study aimed to develop an image-derived phenotype (IDP) for metabolic abnormality from unenhanced abdominal computed tomography (CT) scans using deep learning. We used this IDP to classify individuals with metabolic syndrome and predict future occurrence of cardiometabolic disorders. METHODS: A multi-stage deep learning approach was used to extract the IDP from the liver region of unenhanced abdominal CT scans. In a cohort of over 2,000 individuals the IDP was used to classify individuals with metabolic syndrome. In a subset of over 1,300 individuals, the IDP was used to predict future occurrence of hypertension, type II diabetes, and fatty liver disease. RESULTS: For metabolic syndrome (MetS) classification, we compared the performance of the proposed IDP to liver attenuation and visceral adipose tissue area (VAT). The proposed IDP showed the strongest performance (AUC 0.82) compared to attenuation (AUC 0.70) and VAT (AUC 0.80). For disease prediction, we compared the performance of the IDP to baseline MetS diagnosis. The models including the IDP outperformed MetS for type II diabetes (AUCs 0.91 and 0.90) and fatty liver disease (AUCs 0.67 and 0.62) prediction and performed comparably for hypertension prediction (AUCs of 0.77). CONCLUSIONS: This study demonstrated the superior performance of a deep learning IDP compared to traditional radiomic features to classify individuals with metabolic syndrome. Additionally, the IDP outperformed the clinical definition of metabolic syndrome in predicting future morbidities. Our findings underscore the utility of data-driven imaging phenotypes as valuable tools in the assessment and management of metabolic syndrome and cardiometabolic disorders.


Asunto(s)
Aprendizaje Profundo , Síndrome Metabólico , Fenotipo , Humanos , Síndrome Metabólico/diagnóstico por imagen , Síndrome Metabólico/complicaciones , Femenino , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X , Enfermedades Cardiovasculares/diagnóstico por imagen , Adulto , Procesamiento de Imagen Asistido por Computador/métodos
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3068-3071, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36085965

RESUMEN

Microsatellite instability (MSI) is a clinically important characteristic of colorectal cancer. Standard diagnosis of MSI is performed via genetic analyses, however these tests are not always included in routine care. Histopathology whole-slide images (WSIs) are the gold-standard for colorectal cancer diagnosis and are routinely collected. This study develops a model to predict MSI directly from WSIs. Making use of both weakly- and self-supervised deep learning techniques, the proposed model shows improved performance over conventional deep learning models. Additionally, the proposed framework allows for visual interpretation of model decisions. These results are validated in internal and external testing datasets.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Técnicas Histológicas , Humanos
3.
Sci Rep ; 12(1): 15793, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36138035

RESUMEN

Clinical guidelines recommend several risk factors to identify women in early pregnancy at high risk of developing pregnancy-associated hypertension. However, these variables result in low predictive accuracy. Here, we developed a prediction model for pregnancy-associated hypertension using graph-based semi-supervised learning. This is a secondary analysis of a prospective study of healthy pregnant women. To develop the prediction model, we compared the prediction performances across five machine learning methods (semi-supervised learning with both labeled and unlabeled data, semi-supervised learning with labeled data only, logistic regression, support vector machine, and random forest) using three different variable sets: [a] variables from clinical guidelines, [b] selected important variables from the feature selection, and [c] all routine variables. Additionally, the proposed prediction model was compared with placental growth factor, a predictive biomarker for pregnancy-associated hypertension. The study population consisted of 1404 women, including 1347 women with complete follow-up (labeled data) and 57 women with incomplete follow-up (unlabeled data). Among the 1347 with complete follow-up, 2.4% (33/1347) developed pregnancy-associated HTN. Graph-based semi-supervised learning using top 11 variables achieved the best average prediction performance (mean area under the curve (AUC) of 0.89 in training set and 0.81 in test set), with higher sensitivity (72.7% vs 45.5% in test set) and similar specificity (80.0% vs 80.5% in test set) compared to risk factors from clinical guidelines. In addition, our proposed model with graph-based SSL had a higher performance than that of placental growth factor for total study population (AUC, 0.71 vs. 0.80, p < 0.001). In conclusion, we could accurately predict the development pregnancy-associated hypertension in early pregnancy through the use of routine clinical variables with the help of graph-based SSL.


Asunto(s)
Hipertensión Inducida en el Embarazo , Aprendizaje Automático Supervisado , Biomarcadores , Femenino , Humanos , Hipertensión Inducida en el Embarazo/diagnóstico , Factor de Crecimiento Placentario , Embarazo , Estudios Prospectivos
4.
Cell Host Microbe ; 25(5): 719-729.e4, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071295

RESUMEN

The global virome is largely uncharacterized but is now being unveiled by metagenomic DNA sequencing. Exploring the human respiratory virome, in particular, can provide insights into oro-respiratory diseases. Here, we use metagenomics to identify a family of small circular DNA viruses-named Redondoviridae-associated with human diseases. We first identified two redondovirus genomes from bronchoalveolar lavage samples from human lung donors. We then queried thousands of metagenomic samples and recovered 17 additional complete redondovirus genomes. Detections were exclusively in human samples and mostly from respiratory tract and oro-pharyngeal sites, where Redondoviridae was the second most prevalent eukaryotic DNA virus family. Redondovirus sequences were associated with periodontal disease, and abundances decreased with treatment. Some critically ill patients in a medical intensive care unit were found to harbor high levels of redondoviruses in respiratory samples. These results suggest that redondoviruses colonize human oro-respiratory sites and can bloom in several human disorders.


Asunto(s)
Enfermedad Crítica , Infecciones por Virus ADN/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Boca/virología , Periodontitis/virología , Sistema Respiratorio/virología , Adulto , Anciano , Anciano de 80 o más Años , Virus ADN/genética , Virus ADN/patogenicidad , ADN Circular/genética , ADN Viral/genética , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Adulto Joven
5.
Microbiome ; 6(1): 196, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30376898

RESUMEN

BACKGROUND: Historically, the human womb has been thought to be sterile in healthy pregnancies, but this idea has been challenged by recent studies using DNA sequence-based methods, which have suggested that the womb is colonized with bacteria. For example, analysis of DNA from placenta samples yielded small proportions of microbial sequences which were proposed to represent normal bacterial colonization. However, an analysis by our group showed no distinction between background negative controls and placenta samples. Also supporting the idea that the womb is sterile is the observation that germ-free mammals can be generated by sterile delivery of neonates into a sterile isolator, after which neonates remain germ-free, which would seem to provide strong data in support of sterility of the womb. RESULTS: To probe this further and to investigate possible placental colonization associated with spontaneous preterm birth, we carried out another study comparing microbiota in placenta samples from 20 term and 20 spontaneous preterm deliveries. Both 16S rRNA marker gene sequencing and shotgun metagenomic sequencing were used to characterize placenta and control samples. We first quantified absolute amounts of bacterial 16S rRNA gene sequences using 16S rRNA gene quantitative PCR (qPCR). As in our previous study, levels were found to be low in the placenta samples and indistinguishable from negative controls. Analysis by DNA sequencing did not yield a placenta microbiome distinct from negative controls, either using marker gene sequencing as in our previous work, or with shotgun metagenomic sequencing. Several types of artifacts, including erroneous read classifications and barcode misattribution, needed to be identified and removed from the data to clarify this point. CONCLUSIONS: Our findings do not support the existence of a consistent placental microbiome, in either placenta from term deliveries or spontaneous preterm births.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota/genética , Placenta/microbiología , Útero/microbiología , Adulto , Bacterias/genética , ADN Bacteriano/genética , Femenino , Humanos , Embarazo , Nacimiento Prematuro , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Nacimiento a Término
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA