Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Conserv Biol ; 29(2): 350-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25319024

RESUMEN

In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Tecnología de Sensores Remotos/instrumentación
2.
Conserv Biol ; 25(5): 1022-31, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21848964

RESUMEN

Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes-corridors and stepping stones-we combined 3 complimentary methods: behavioral studies at habitat edges, mark-recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark-recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies.


Asunto(s)
Conducta Animal/fisiología , Mariposas Diurnas/fisiología , Conservación de los Recursos Naturales/métodos , Demografía , Ecosistema , Animales , Mariposas Diurnas/genética , Conservación de los Recursos Naturales/estadística & datos numéricos , Genética de Población , Geografía , North Carolina , Árboles
3.
Conserv Biol ; 25(4): 716-25, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21672024

RESUMEN

Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species' ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species' recovery criteria.


Asunto(s)
Especies en Peligro de Extinción , Geografía , Filogenia , Animales , Plantas , Estados Unidos
4.
PLoS One ; 5(3): e9534, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20224772

RESUMEN

Habitat fragmentation is a major driver of biodiversity loss. Yet, the overall effects of fragmentation on biodiversity may be obscured by differences in responses among species. These opposing responses to fragmentation may be manifest in higher variability in species richness and abundance (termed hyperdynamism), and in predictable changes in community composition. We tested whether forest fragmentation causes long-term hyperdynamism in butterfly communities, a taxon that naturally displays large variations in species richness and community composition. Using a dataset from an experimentally fragmented landscape in the central Amazon that spanned 11 years, we evaluated the effect of fragmentation on changes in species richness and community composition through time. Overall, adjusted species richness (adjusted for survey duration) did not differ between fragmented forest and intact forest. However, spatial and temporal variation of adjusted species richness was significantly higher in fragmented forests relative to intact forest. This variation was associated with changes in butterfly community composition, specifically lower proportions of understory shade species and higher proportions of edge species in fragmented forest. Analysis of rarefied species richness, estimated using indices of butterfly abundance, showed no differences between fragmented and intact forest plots in spatial or temporal variation. These results do not contradict the results from adjusted species richness, but rather suggest that higher variability in butterfly adjusted species richness may be explained by changes in butterfly abundance. Combined, these results indicate that butterfly communities in fragmented tropical forests are more variable than in intact forest, and that the natural variability of butterflies was not a buffer against the effects of fragmentation on community dynamics.


Asunto(s)
Mariposas Diurnas/fisiología , Árboles/crecimiento & desarrollo , Animales , Brasil , Ecosistema , Ambiente , Monitoreo del Ambiente/métodos , Especificidad de la Especie , Factores de Tiempo , Árboles/fisiología , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA