RESUMEN
The objective of this study was to determine i) if Camembert cheese micro-organisms could be detected in fecal samples after regular consumption by human subjects and ii) the consequence of this consumption on global metabolic activities of the host colonic microbiota. An open human protocol was designed where 12 healthy volunteers were included: a 2-week period of fermented products exclusion followed by a 4-weeks Camembert ingestion period where 2x40 g/day of Camembert cheese was consumed. Stools were collected from the volunteers before consumption, twice during the ingestion period (2nd and 4th week) and once after a wash out period of 2 weeks. During the consumption of Camembert cheese, high levels of Lactococcus lactis and Leuconostoc mesenteroides were measured in fecal samples using real-time quantitative PCR, reaching median values of 8.2 and 7.5 Log(10) genome equivalents/g of stool. For Ln. mesenteroides, persistence was observed 15 days after the end of Camembert consumption. The survival of Geotrichum candidum was also assessed and the fecal concentration reached a median level of 7.1 Log(10) CFU/g in stools. Except a decreasing trend of the nitrate reductase activity, no significant modification was shown in the metabolic activities during this study.
Asunto(s)
Queso/microbiología , Colon/microbiología , Heces/microbiología , Lactobacillus/crecimiento & desarrollo , Streptococcus thermophilus/crecimiento & desarrollo , Adulto , Recuento de Colonia Microbiana , Estudios Cruzados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Hongos/química , ADN de Hongos/genética , Femenino , Microbiología de Alimentos , Geotrichum/crecimiento & desarrollo , Geotrichum/aislamiento & purificación , Geotrichum/metabolismo , Humanos , Lactobacillus/aislamiento & purificación , Lactobacillus/metabolismo , Masculino , Nitrato-Reductasa/metabolismo , Reacción en Cadena de la Polimerasa/métodos , Streptococcus thermophilus/aislamiento & purificación , Streptococcus thermophilus/metabolismo , Factores de TiempoRESUMEN
Multicellular tumor spheroids models are of increasing interest in preclinical studies and pharmacological evaluation. However, their storage and transport is often a limitation because it requires adapted and expensive procedures. Here, we propose a very simple method to store 3D spheroids, using a procedure based on oxygen absorber-induced anoxia. We report that oxygen absorbers allow generating an anoxic environment for spheroid storage in culture plates. Oxygen absorber-induced anoxia fully and reversibly arrests spheroid growth for 4 days at 37°C and up to 18 days at 4°C. We then show that the response to etoposide is comparable in spheroids preserved in conditions of absorber-induced anoxia at 4°C and spheroids kept in normoxia at 37°C. These results represent a major improvement that should simplify the storage, transport and use of 3D spheroids.
RESUMEN
SCOPE: Inflammatory bowel disease (IBD) constitutes a growing public health concern in western countries. Bacteria with anti-inflammatory properties are lacking in the dysbiosis accompanying IBD. Selected strains of probiotic bacteria with anti-inflammatory properties accordingly alleviate symptoms and enhance treatment of ulcerative colitis in clinical trials. Such properties are also found in selected strains of dairy starters such as Propionibacterium freudenreichii and Lactobacillus delbrueckii (Ld). We thus investigated the possibility to develop a fermented dairy product, combining both starter and probiotic abilities of both lactic acid and propionic acid bacteria, designed to extend remissions in IBD patients. METHODS AND RESULTS: We developed a single-strain Ld-fermented milk and a two-strain P. freudenreichii and Ld-fermented experimental pressed cheese using strains previously selected for their anti-inflammatory properties. Consumption of these experimental fermented dairy products protected mice against trinitrobenzenesulfonic acid induced colitis, alleviating severity of symptoms, modulating local and systemic inflammation, as well as colonic oxidative stress and epithelial cell damages. As a control, the corresponding sterile dairy matrix failed to afford such protection. CONCLUSION: This work reveals the probiotic potential of this bacterial mixture, in the context of fermented dairy products. It opens new perspectives for the reverse engineering development of anti-inflammatory fermented foods designed for target populations with IBD, and has provided evidences leading to an ongoing pilot clinical study in ulcerative colitis patients.
Asunto(s)
Queso/microbiología , Microbioma Gastrointestinal , Lactobacillus delbrueckii/inmunología , Probióticos/farmacología , Propionibacterium freudenreichii/inmunología , Animales , Antiinflamatorios no Esteroideos/farmacología , Biomarcadores/sangre , Biomarcadores/metabolismo , Peso Corporal/efectos de los fármacos , Colitis/inducido químicamente , Colitis/prevención & control , Colon/efectos de los fármacos , Colon/patología , Femenino , Fermentación , Lactobacillus delbrueckii/genética , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Propionibacterium freudenreichii/genética , Ácido Trinitrobencenosulfónico/toxicidadRESUMEN
The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.