Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 23(11): 1515-1522, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39160353

RESUMEN

Perovskite crystals-with their exceptional nonlinear optical properties, lasing and waveguiding capabilities-offer a promising platform for integrated photonic circuitry within the strong-coupling regime at room temperature. Here we demonstrate a versatile template-assisted method to efficiently fabricate large-scale waveguiding perovskite crystals of arbitrarily predefined geometry such as microwires, couplers and splitters. We non-resonantly stimulate a condensate of waveguided exciton-polaritons resulting in bright polariton lasing from the transverse interfaces and corners of our perovskite microstructures. Large blueshifts with excitation power and high mutual coherence between the different edge and corner lasing signals are detected in the far-field photoluminescence, implying that a spatially extended condensates of coherent polaritons has formed. The condensate polaritons are found to propagate over long distances in the wires from the excitation spot and can couple to neighbouring wires through large air gaps, making our platform promising for integrated polaritonic circuitry and on-chip optical devices with strong nonlinearities.

2.
Sci Adv ; 8(40): eabq7533, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36197989

RESUMEN

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA