Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
AJR Am J Roentgenol ; 222(3): e2329778, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37991334

RESUMEN

BACKGROUND. The higher spatial resolution and image contrast for iodine-containing tissues of photon-counting detector (PCD) CT may address challenges in evaluating small calcified vessels when performing lower extremity CTA by energy-integrating detector (EID) CTA. OBJECTIVE. The purpose of the study was to compare the evaluation of infrapopliteal vasculature between lower extremity CTA performed using EID CT and PCD CT. METHODS. This prospective study included 32 patients (mean age, 69.7 ± 11.3 [SD] years; 27 men, five women) who underwent clinically indicated lower extremity EID CTA between April 2021 and March 2022; participants underwent investigational lower extremity PCD CTA later the same day as EID CTA using a reduced IV contrast media dose. Two radiologists independently reviewed examinations in two sessions, each containing a random combination of EID CTA and PCD CTA examinations; the readers assessed the number of visualized fibular perforators, characteristics of stenoses at 11 infrapopliteal segmental levels, and subjective arterial sharpness. RESULTS. Mean IV contrast media dose was 60.0 ± 11.0 (SD) mL for PCD CTA versus 139.6 ± 11.8 mL for EID CTA (p < .001). The number of identified fibular perforators per lower extremity was significantly higher for PCD CTA than for EID CTA for reader 1 (R1) (mean ± SD, 6.4 ± 3.2 vs 4.2 ± 2.4; p < .001) and reader 2 (R2) (8.8 ± 3.4 vs 7.6 ± 3.3; p = .04). Reader confidence for assessing stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 82.3 ± 20.3 vs 78.0 ± 20.2; p < .001) but not R2 (89.8 ± 16.7 vs 90.6 ± 7.1; p = .24). The number of segments per lower extremity with total occlusion was significantly lower for PCD CTA than for EID CTA for R2 (mean ± SD, 0.5 ± 1.3 vs 0.9 ± 1.7; p = .04) but not R1 (0.6 ± 1.3 vs 1.0 ± 1.5; p = .07). The number of segments per lower extremity with clinically significant nonocclusive stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 2.2 ± 2.2 vs 1.6 ± 1.7; p = .01) but not R2 (1.1 ± 2.0 vs 1.1 ± 1.4; p = .89). Arterial sharpness was significantly greater for PCD CTA than for EID CTA for R1 (mean ± SD, 3.2 ± 0.5 vs 1.8 ± 0.5; p < .001) and R2 (3.2 ± 0.4 vs 1.7 ± 0.8; p < .001). CONCLUSION. PCD CTA yielded multiple advantages relative to EID CTA for visualizing small infrapopliteal vessels and characterizing associated plaque. CLINICAL IMPACT. The use of PCD CTA may improve vascular evaluation in patients with peripheral arterial disease.


Asunto(s)
Medios de Contraste , Fotones , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Constricción Patológica , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Extremidad Inferior/diagnóstico por imagen
2.
J Comput Assist Tomogr ; 48(2): 212-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37801651

RESUMEN

OBJECTIVES: Photon-counting detector (PCD) computed tomography (CT) offers improved spatial and contrast resolution, which can impact quantitative measurements. This work aims to determine in human subjects the effect of dual-source PCD-CT on the quantitation of coronary artery calcification (CAC) compared with dual-source energy-integrating detector (EID) CT in both 1- and 3-mm images. METHODS: This prospective study enrolled patients receiving a clinical EID-CT CAC examination to undergo a research PCD-CT CAC examination. Axial images were reconstructed with a 512 × 512 matrix, 200-mm field of view, 3-mm section thickness/1.5-mm interval using a quantitative kernel (Qr36). Sharper kernels (Qr56/QIR strength 4 for PCD and Qr49/ADMIRE strength 5 for EID) were used to reconstruct images with 1-mm section thickness/0.5-mm interval. Pooled analysis was performed for all calcifications with nonzero values, and volume and Agatston scores were compared between EID-CT and PCD-CT. A Wilcoxon signed-rank test was performed with P < 0.05 considered statistically significant. RESULTS: In 21 subjects (median age, 58 years; range, 50-75 years; 13 male [62%]) with a total of 42 calcified arteries detected at 3 mm and 46 calcified arteries at 1-mm images, EID-CT CAC volume and Agatston scores were significantly lower than those of PCD-CT ( P ≤ 0.001). At 3-mm thickness, the mean (standard deviation) volume and Agatston score for EID-CT were 55.5 (63.4) mm 3 and 63.8 (76.9), respectively, and 61.5 (69.4) mm 3 and 70.4 (85.3) for PCD-CT ( P = 0.0001 and P = 0.0013). At 1-mm thickness, the mean (standard deviation) volume and score for EID-CT were 50.0 (56.3) mm 3 and 61.1 (69.3), respectively, and 59.5 (63.9) mm 3 and 72.5 (79.9) for PCD-CT ( P < 0.0001 for both). The applied radiation dose (volume CT dose index) for the PCD-CT scan was 2.1 ± 0.6 mGy, which was 13% lower than for the EID-CT scan (2.4 ± 0.7 mGy, P < 0.001). CONCLUSIONS: Relative to EID-CT, PCD-CT demonstrated a small but significant increase in coronary artery calcium volume and Agatston score.


Asunto(s)
Calcinosis , Calcio , Humanos , Masculino , Persona de Mediana Edad , Vasos Coronarios/diagnóstico por imagen , Estudios Prospectivos , Fotones , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
3.
J Comput Assist Tomogr ; 48(1): 104-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37566794

RESUMEN

OBJECTIVE: Pulse pileup effects occur when pulses occur so close together that they fall on top of one another, resulting in count loss and errors in energy thresholding. To date, there has been little work systematically detailing the quantitative effects of pulse pileup on material decomposition accuracy for photon-counting detector (PCD) computed tomography (CT). Our aim in this work was to quantify the effects of pulse pileup on single-energy and multienergy CT images, including low-energy bin (BL), high-energy bin (BH), iodine map, and virtual noncontrast images from a commercial PCD-CT. METHODS: Scans of a 20-cm diameter multienergy CT phantom with 10 solid inserts were acquired at a fixed tube potential as the tube current was varied across the available range. Four types of images (BL, BH, iodine map, and virtual noncontrast) were reconstructed using an iterative reconstruction algorithm at strength 2, a quantitative reconstruction kernel (Qr40), 2-/1-mm slice thickness/increment, and a 210-mm field-of-view. The mean and standard deviation of CT numbers were recorded and the ratios of CT number between BL and BH images were calculated and plotted, along with noise versus tube current and noise × versus tube current. RESULTS: As tube current was increased, the range of variations in CT numbers was less than 13.4 HU for all inserts and image types evaluated. Noise × versus tube current showed a small positive slope equal to a noise increase from 100 mA of 10% at 500 mA and 15% at 900 mA compared with what would be expected if the slope was zero. CONCLUSIONS: Minimal impact on single-energy and multienergy CT numbers and noise performance was observed for the evaluated clinical PCD-CT system.


Asunto(s)
Yodo , Fotones , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Algoritmos
4.
Radiology ; 309(3): e230853, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051190

RESUMEN

Background Compared with energy-integrating detector (EID) CT, the improved resolution of photon-counting detector (PCD) CT coupled with high-energy virtual monoenergetic images (VMIs) has been shown to decrease calcium blooming on images in phantoms and cadaveric specimens. Purpose To determine the impact of dual-source PCD CT on visual and quantitative estimation of percent diameter luminal stenosis compared with dual-source EID CT in patients. Materials and Methods This prospective study recruited consecutive adult patients from an outpatient facility between January and March 2022. Study participants underwent clinical dual-source EID coronary CT angiography followed by a research dual-source PCD CT examination. For PCD CT, multienergy data were used to create VMIs at 50 and 100 keV. Two readers independently reviewed EID CT images followed by PCD CT images after a washout period. Readers visually graded the most severe stenosis in terms of percent diameter luminal stenosis for the left main, left anterior descending, right, and circumflex coronary arteries, unblinded to scanner type. Quantitative measures of percent stenosis were made using commercial software. Visual and quantitative estimates of percent stenosis were compared between EID CT and PCD CT using the Wilcoxon signed-rank test. Results A total of 25 participants (median age, 59 years [range, 18-78 years]; 16 male participants) were enrolled. On EID CT images, readers 1 and 2 identified 39 and 32 luminal stenoses, respectively, with a percent diameter luminal stenosis greater than 0%. Visual estimates of percent stenosis were lower on PCD CT images than EID CT images (reader 1: median 20.6% [IQR, 8.8%-61.2%] vs 31.8% [IQR, 12.9%-69.7%], P < .001; reader 2: 6.5% [IQR, 0.4%-54.1%] vs 22.9% [IQR, 1.8%-67.4%], P = .002). No difference was observed between EID CT and PCD CT for quantitative measures of percent stenosis (median difference, -1.5% [95% CI: -3.0%, 2.5%]; P = .51). Conclusion Relative to using EID CT, using PCD CT led to decreases in visual estimates of percent stenosis. © RSNA, 2023 See also the editorial by Murphy and Donnelly in this issue.


Asunto(s)
Angiografía por Tomografía Computarizada , Tomografía Computarizada por Rayos X , Adulto , Humanos , Masculino , Persona de Mediana Edad , Angiografía por Tomografía Computarizada/métodos , Constricción Patológica , Angiografía Coronaria/métodos , Fantasmas de Imagen , Fotones , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos , Adolescente , Adulto Joven , Anciano , Femenino
5.
Radiology ; 306(1): 229-236, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066364

RESUMEN

Background Photon-counting detector (PCD) CT and deep learning noise reduction may improve spatial resolution at lower radiation doses compared with energy-integrating detector (EID) CT. Purpose To demonstrate the diagnostic impact of improved spatial resolution in whole-body low-dose CT scans for viewing multiple myeloma by using PCD CT with deep learning denoising compared with conventional EID CT. Materials and Methods Between April and July 2021, adult participants who underwent a whole-body EID CT scan were prospectively enrolled and scanned with a PCD CT system in ultra-high-resolution mode at matched radiation dose (8 mSv for an average adult) at an academic medical center. EID CT and PCD CT images were reconstructed with Br44 and Br64 kernels at 2-mm section thickness. PCD CT images were also reconstructed with Br44 and Br76 kernels at 0.6-mm section thickness. The thinner PCD CT images were denoised by using a convolutional neural network. Image quality was objectively quantified in two phantoms and a randomly selected subset of participants (10 participants; median age, 63.5 years; five men). Two radiologists scored PCD CT images relative to EID CT by using a five-point Likert scale to detect findings reflecting multiple myeloma. The scoring for the matched reconstruction series was blinded to scanner type. Reader-averaged scores were tested with the null hypothesis of equivalent visualization between EID and PCD. Results Twenty-seven participants (median age, 68 years; IQR, 61-72 years; 16 men) were included. The blinded assessment of 2-mm images demonstrated improvement in viewing lytic lesions, intramedullary lesions, fatty metamorphosis, and pathologic fractures for PCD CT versus EID CT (P < .05 for all comparisons). The 0.6-mm PCD CT images with convolutional neural network denoising also demonstrated improvement in viewing all four pathologic abnormalities and detected one or more lytic lesions in 21 of 27 participants compared with the 2-mm EID CT images (P < .001). Conclusion Ultra-high-resolution photon-counting detector CT improved the visibility of multiple myeloma lesions relative to energy-integrating detector CT. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Aprendizaje Profundo , Mieloma Múltiple , Adulto , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X/métodos , Femenino
6.
Radiology ; 306(2): e220266, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36194112

RESUMEN

Background Substantial interreader variability exists for common tasks in CT imaging, such as detection of hepatic metastases. This variability can undermine patient care by leading to misdiagnosis. Purpose To determine the impact of interreader variability associated with (a) reader experience, (b) image navigation patterns (eg, eye movements, workstation interactions), and (c) eye gaze time at missed liver metastases on contrast-enhanced abdominal CT images. Materials and Methods In a single-center prospective observational trial at an academic institution between December 2020 and February 2021, readers were recruited to examine 40 contrast-enhanced abdominal CT studies (eight normal, 32 containing 91 liver metastases). Readers circumscribed hepatic metastases and reported confidence. The workstation tracked image navigation and eye movements. Performance was quantified by using the area under the jackknife alternative free-response receiver operator characteristic (JAFROC-1) curve and per-metastasis sensitivity and was associated with reader experience and image navigation variables. Differences in area under JAFROC curve were assessed with the Kruskal-Wallis test followed by the Dunn test, and effects of image navigation were assessed by using the Wilcoxon signed-rank test. Results Twenty-five readers (median age, 38 years; IQR, 31-45 years; 19 men) were recruited and included nine subspecialized abdominal radiologists, five nonabdominal staff radiologists, and 11 senior residents or fellows. Reader experience explained differences in area under the JAFROC curve, with abdominal radiologists demonstrating greater area under the JAFROC curve (mean, 0.77; 95% CI: 0.75, 0.79) than trainees (mean, 0.71; 95% CI: 0.69, 0.73) (P = .02) or nonabdominal subspecialists (mean, 0.69; 95% CI: 0.60, 0.78) (P = .03). Sensitivity was similar within the reader experience groups (P = .96). Image navigation variables that were associated with higher sensitivity included longer interpretation time (P = .003) and greater use of coronal images (P < .001). The eye gaze time was at least 0.5 and 2.0 seconds for 71% (266 of 377) and 40% (149 of 377) of missed metastases, respectively. Conclusion Abdominal radiologists demonstrated better discrimination for the detection of liver metastases on abdominal contrast-enhanced CT images. Missed metastases frequently received at least a brief eye gaze. Higher sensitivity was associated with longer interpretation time and greater use of liver display windows and coronal images. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Neoplasias Hepáticas , Masculino , Humanos , Adulto , Neoplasias Hepáticas/patología , Errores Diagnósticos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
7.
Eur Radiol ; 33(8): 5321-5330, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37014409

RESUMEN

Since 1971 and Hounsfield's first CT system, clinical CT systems have used scintillating energy-integrating detectors (EIDs) that use a two-step detection process. First, the X-ray energy is converted into visible light, and second, the visible light is converted to electronic signals. An alternative, one-step, direct X-ray conversion process using energy-resolving, photon-counting detectors (PCDs) has been studied in detail and early clinical benefits reported using investigational PCD-CT systems. Subsequently, the first clinical PCD-CT system was commercially introduced in 2021. Relative to EIDs, PCDs offer better spatial resolution, higher contrast-to-noise ratio, elimination of electronic noise, improved dose efficiency, and routine multi-energy imaging. In this review article, we provide a technical introduction to the use of PCDs for CT imaging and describe their benefits, limitations, and potential technical improvements. We discuss different implementations of PCD-CT ranging from small-animal systems to whole-body clinical scanners and summarize the imaging benefits of PCDs reported using preclinical and clinical systems. KEY POINTS: • Energy-resolving, photon-counting-detector CT is an important advance in CT technology. • Relative to current energy-integrating scintillating detectors, energy-resolving, photon-counting-detector CT offers improved spatial resolution, improved contrast-to-noise ratio, elimination of electronic noise, increased radiation and iodine dose efficiency, and simultaneous multi-energy imaging. • High-spatial-resolution, multi-energy imaging using energy-resolving, photon-counting-detector CT has been used in investigations into new imaging approaches, including multi-contrast imaging.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Animales , Tomografía Computarizada por Rayos X/métodos , Fotones , Rayos X , Fantasmas de Imagen
8.
Eur Radiol ; 33(8): 5309-5320, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37020069

RESUMEN

The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.


Asunto(s)
Compuestos de Yodo , Yodo , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomógrafos Computarizados por Rayos X , Medios de Contraste , Fotones , Fantasmas de Imagen
9.
AJR Am J Roentgenol ; 220(4): 551-560, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36259593

RESUMEN

Photon-counting detector (PCD) CT has emerged as a novel imaging modality that represents a fundamental shift in the way that CT systems detect x-rays. After pre-clinical and clinical investigations showed benefits of PCD CT for a range of imaging tasks, the U.S. FDA in 2021 approved the first commercial PCD CT system for clinical use. The technologic features of PCD CT are particularly well suited for musculo-skeletal imaging applications. Advantages of PCD CT compared with conventional energy-integrating detector (EID) CT include smaller detector pixels and excellent geometric dose efficiency that enable imaging of large joints and central skeletal anatomy at ultrahigh spatial resolution; advanced multienergy spectral postprocessing that allows quantification of gout deposits and generation of virtual noncalcium images for visualization of bone edema; improved metal artifact reduction for imaging of orthopedic implants; and higher CNR and suppression of electronic noise. Given substantially improved cortical and trabecular detail, PCD CT images more clearly depict skeletal abnormalities, including fractures, lytic lesions, and mineralized tumor matrix. The purpose of this article is to review, by use of clinical examples comparing EID CT and PCD CT, the technical features of PCD CT and their associated impact on musculoskeletal imaging applications.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Rayos X
10.
AJR Am J Roentgenol ; 220(2): 283-295, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36129222

RESUMEN

BACKGROUND. Iterative reconstruction (IR) techniques are susceptible to contrast-dependent spatial resolution, limiting overall radiation dose reduction potential. Deep learning image reconstruction (DLIR) may mitigate this limitation. OBJECTIVE. The purpose of our study was to evaluate low-contrast detectability performance and radiation-saving potential of a DLIR algorithm in comparison with filtered back projection (FBP) and IR using a human multireader noninferiority study design and task-based observer modeling. METHODS. A dual-phantom construct, consisting of a low-contrast detectability module (21 low-contrast hypoattenuating objects in seven sizes [2.4-10.0 mm] and three contrast levels [-15, -10, -5 HU] embedded within liver-equivalent background) and a phantom, was imaged at five radiation exposures (CTDIvol range, 1.4-14.0 mGy; size-specific dose estimate, 2.5-25.0 mGy; 90%-, 70%-, 50%-, and 30%-reduced radiation levels and full radiation level) using an MDCT scanner. Images were reconstructed using FBP, hybrid IR (ASiR-V), and DLIR (TrueFidelity). Twenty-four readers of varying experience levels evaluated images using a two-alternative forced choice. A task-based observer model (detectability index [d']) was calculated. Reader performance was estimated by calculating the AUC using a noninferiority method. RESULTS. Compared with FBP and IR methods at routine radiation levels, DLIR medium and DLIR high settings showed noninferior performance through a 90% radiation reduction (except DLIR medium setting at 70% reduced level). The IR method was non-inferior to routine radiation FBP only for 30% and 50% radiation reductions. No significant difference in d' was observed between routine radiation FBP and DLIR high setting through a 70% radiation reduction. Reader experience was not correlated with diagnostic accuracy (R2 = 0.005). CONCLUSION. Compared with FBP or IR methods at routine radiation levels, certain DLIR algorithm weightings yielded noninferior low-contrast detectability with radiation reductions of up to 90% as measured by 24 human readers and up to 70% as assessed by a task-based observer model. CLINICAL IMPACT. DLIR has substantial potential to preserve contrast-dependent spatial resolution for the detection of hypoattenuating lesions at decreased radiation levels in a phantom model, addressing a major shortcoming of current IR techniques.


Asunto(s)
Aprendizaje Profundo , Humanos , Dosis de Radiación , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador
11.
Radiographics ; 43(5): e220158, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37022956

RESUMEN

Photon-counting detector (PCD) CT is an emerging technology that has led to continued innovation and progress in diagnostic imaging after it was approved by the U.S. Food and Drug Administration for clinical use in September 2021. Conventional energy-integrating detector (EID) CT measures the total energy of x-rays by converting photons to visible light and subsequently using photodiodes to convert visible light to digital signals. In comparison, PCD CT directly records x-ray photons as electric signals, without intermediate conversion to visible light. The benefits of PCD CT systems include improved spatial resolution due to smaller detector pixels, higher iodine image contrast, increased geometric dose efficiency to allow high-resolution imaging, reduced radiation dose for all body parts, multienergy imaging capabilities, and reduced artifacts. To recognize these benefits, diagnostic applications of PCD CT in musculoskeletal, thoracic, neuroradiologic, cardiovascular, and abdominal imaging must be optimized and adapted for specific diagnostic tasks. The diagnostic benefits and clinical applications resulting from PCD CT in early studies have allowed improved visualization of key anatomic structures and radiologist confidence for some diagnostic tasks, which will continue as PCD CT evolves and clinical use and applications grow. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material. See the invited commentary by Ananthakrishnan in this issue.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Intensificación de Imagen Radiográfica/métodos , Fotones
12.
J Comput Assist Tomogr ; 47(4): 603-607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37380148

RESUMEN

OBJECTIVE: Noise quantification is fundamental to computed tomography (CT) image quality assessment and protocol optimization. This study proposes a deep learning-based framework, Single-scan Image Local Variance EstimatoR (SILVER), for estimating the local noise level within each region of a CT image. The local noise level will be referred to as a pixel-wise noise map. METHODS: The SILVER architecture resembled a U-Net convolutional neural network with mean-square-error loss. To generate training data, 100 replicate scans were acquired of 3 anthropomorphic phantoms (chest, head, and pelvis) using a sequential scan mode; 120,000 phantom images were allocated into training, validation, and testing data sets. Pixel-wise noise maps were calculated for the phantom data by taking the per-pixel SD from the 100 replicate scans. For training, the convolutional neural network inputs consisted of phantom CT image patches, and the training targets consisted of the corresponding calculated pixel-wise noise maps. Following training, SILVER noise maps were evaluated using phantom and patient images. For evaluation on patient images, SILVER noise maps were compared with manual noise measurements at the heart, aorta, liver, spleen, and fat. RESULTS: When tested on phantom images, the SILVER noise map prediction closely matched the calculated noise map target (root mean square error <8 Hounsfield units). Within 10 patient examinations, SILVER noise map had an average percent error of 5% relative to manual region-of-interest measurements. CONCLUSION: The SILVER framework enabled accurate pixel-wise noise level estimation directly from patient images. This method is widely accessible because it operates in the image domain and requires only phantom data for training.


Asunto(s)
Aprendizaje Profundo , Humanos , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Tórax , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
13.
J Comput Assist Tomogr ; 47(4): 569-575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790898

RESUMEN

OBJECTIVE: This study aimed to determine the optimal photon energy for virtual monoenergetic images (VMI) in computed tomography angiography (CTA) using photon-counting-detector (PCD) CT. METHODS: Under institutional review board approval, 10 patients (abdominal, n = 4; lower extremity, n = 3; head and neck, n = 3) were scanned on an investigational PCD-CT (Count Plus, Siemens Healthcare) at 120 or 140 kV. All images were iteratively reconstructed with Bv48 kernel and 2-mm slice thickness. Axial and coronal VMI maximum-intensity projections were created in the range 40 to 65 keV (5-keV steps). Contrast-to-noise ratio (CNR) was calculated for major arteries in each VMI series. Two radiologists blindly ranked each VMI series for overall image quality and visualization of small vessels and pathology. The median and SD of scores for each photon energy were calculated. In addition, readers identified any VMIs that distinguished itself from others in terms of vessel/pathology visualization or artifacts. RESULTS: Mean iodine CNR was highest in 40-keV VMIs for all evaluated arteries. Across readers, the 50-keV VMI had the highest combined score (2.00 ± 1.11). Among different body parts, the 45-keV VMI was ranked highest for the head-and-neck (1.75 ± 0.68) and lower extremity (2.00 ± 1.41) CTA. Meanwhile, 50- and 55-keV VMIs were ranked highest for abdominal (2.50 ± 1.35 and 2.50 ± 1.56) CTA. The 40-keV VMI received the highest score for iodine visualization in vessels, and the 65-keV VMI for reduced metal/calcium-blooming artifacts. CONCLUSIONS: Quantitatively, VMIs at 40 keV had the highest CNR in major arterial vasculature using PCD-CTA. Based on radiologists' preference, the 45- and 50-keV VMIs were optimal for small body parts (eg, head and neck and lower extremity) and large body parts (eg, abdomen), respectively.


Asunto(s)
Yodo , Imagen Radiográfica por Emisión de Doble Fotón , Humanos , Angiografía por Tomografía Computarizada/métodos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos , Cabeza , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Estudios Retrospectivos , Imagen Radiográfica por Emisión de Doble Fotón/métodos
14.
Skeletal Radiol ; 52(1): 23-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35831718

RESUMEN

OBJECTIVE: To compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems. MATERIALS AND METHODS: Participants were scanned on a photon-counting-detector CT system after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120 kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120 kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value < 0.05 was considered statistically significant. RESULTS: Twelve wrists (mean participant age 55.3 ± 17.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6 ± 0.1 mGy versus 19.0 ± 6.7 mGy, p < .001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score = 4, p < 0.001). The mean bone CT number was higher in photon-counting-detector CT images (1946 ± 77 HU versus 1727 ± 49 HU, p < 0.001). Conversely, there was no difference in the mean image noise of the two CT systems (63 ± 6 HU versus 61 ± 6 HU, p = 0.13). CONCLUSION: Ultra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction.


Asunto(s)
Fotones , Muñeca , Masculino , Femenino , Humanos , Fantasmas de Imagen , Muñeca/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Dosis de Radiación
15.
Skeletal Radiol ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943305

RESUMEN

Lunotriquetral coalitions are the most common form of carpal coalition wherein the cartilage between the lunate and triquetrum ossification centers failed to undergo apoptosis. This technical case report examines the arthrokinematics of bilateral lunotriquetral coalitions with dissimilar Minnaar types in one participant with one asymptomatic wrist and one wrist with suspected distal radioulnar joint injury. Static and dynamic (four-dimensional) CT images during pronosupination were captured using a photon-counting detector CT scanner. Interosseous proximity distributions were calculated between the lunotriquetral coalition and adjacent bones in both wrists to quantify arthrokinematics. Interosseous proximity distributions at joints adjacent to the lunotriquetral coalition demonstrate differences in median and minimum interosseous proximities between the asymptomatic and injured wrists during resisted pronosupination. Altered kinematics from lunotriquetral coalitions may be a source of ulnar-sided wrist pain and discomfort, limiting the functional range of motion. This case report highlights potential alterations to wrist arthrokinematics in the setting of lunotriquetral coalitions and possible associations with ulnar-sided wrist pain, highlighting anatomy to examine in radiographic follow-up. Furthermore, this case report demonstrates the technical feasibility of four-dimensional CT using photon-counting detector technology in assessing arthrokinematics in the setting of variant wrist anatomy.

16.
J Appl Clin Med Phys ; 24(7): e14074, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37335819

RESUMEN

PURPOSE: To determine the suitability of a quality assurance (QA) program based on the American College of Radiology's (ACR) CT quality control (QC) manual to fully evaluate the unique capabilities of a clinical photon-counting-detector (PCD) CT system. METHODS: A daily QA program was established to evaluate CT number accuracy and artifacts for both standard and ultra-high-resolution (UHR) scan modes. A complete system performance evaluation was conducted in accordance with the ACR CT QC manual by scanning the CT Accreditation Phantom with routine clinical protocols and reconstructing low-energy-threshold (T3D) and virtual monoenergetic images (VMIs) between 40 and 120 keV. Spatial resolution was evaluated by computing the modulation transfer function (MTF) for the UHR mode, and multi-energy performance was evaluated by scanning a body phantom containing four iodine inserts with concentrations between 2 and 15 mg I/cc. RESULTS: The daily QA program identified instances when the detector needed recalibration or replacement. CT number accuracy was impacted by image type: CT numbers at 70 keV VMI were within the acceptable range (defined for 120 kV). Other keV VMIs and the T3D reconstruction had at least one insert with CT number outside the acceptable range. The limiting resolution was nearly 40 lp/cm based on MTF measurements, which far exceeds the 12 lp/cm maximum capability of the ACR phantom. The CT numbers in the iodine inserts were accurate on all VMIs (3.8% average percentage error), while the iodine concentrations had an average root mean squared error of 0.3 mg I/cc. CONCLUSION: Protocols and parameters must be properly selected on PCD-CT to meet current accreditation requirements with the ACR CT phantom. Use of the 70 keV VMI allowed passing all tests prescribed in the ACR CT manual. Additional evaluations such an MTF measurement and multi-energy phantom scans are also recommended to comprehensively evaluate PCD-CT scanner performance.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Fotones , Protocolos Clínicos
17.
J Appl Clin Med Phys ; 24(1): e13800, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36210177

RESUMEN

PURPOSE: Metallic implants have been correlated to local control failure for spinal sarcoma and chordoma patients due to the uncertainty of implant delineation from computed tomography (CT). Such uncertainty can compromise the proton Monte Carlo dose calculation (MCDC) accuracy. A component method is proposed to determine the dimension and volume of the implants from CT images. METHODS: The proposed component method leverages the knowledge of surgical implants from medical supply vendors to predefine accurate contours for each implant component, including tulips, screw bodies, lockers, and rods. A retrospective patient study was conducted to demonstrate the feasibility of the method. The reference implant materials and samples were collected from patient medical records and vendors, Medtronic and NuVasive. Additional CT images with extensive features, such as extended Hounsfield units and various reconstruction diameters, were used to quantify the uncertainty of implant contours. RESULTS: For in vivo patient implant estimation, the reference and the component method differences were 0.35, 0.17, and 0.04 cm3 for tulips, screw bodies, and rods, respectively. The discrepancies by a conventional threshold method were 5.46, 0.76, and 0.05 cm3 , respectively. The mischaracterization of implant materials and dimensions can underdose the clinical target volume coverage by 20 cm3 for a patient with eight lumbar implants. The tulip dominates the dosimetry uncertainty as it can be made from titanium or cobalt-chromium alloys by different vendors. CONCLUSIONS: A component method was developed and demonstrated using phantom and patient studies with implants. The proposed method provides more accurate implant characterization for proton MCDC and can potentially enhance the treatment quality for proton therapy. The current proof-of-concept study is limited to the implant characterization for lumbar spine. Future investigations could be extended to cervical spine and dental implants for head-and-neck patients where tight margins are required to spare organs at risk.


Asunto(s)
Terapia de Protones , Protones , Humanos , Dosificación Radioterapéutica , Estudios Retrospectivos , Algoritmos , Radiometría/métodos , Terapia de Protones/métodos , Método de Montecarlo , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos
18.
Radiology ; 303(2): 404-411, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35040673

RESUMEN

Background The size-specific dose estimate (SSDE) is a patient-focused CT dose metric. However, published size-dependent conversion factors (fsize) used to calculate SSDE were determined primarily by using phantoms; only eight to 15 patient data sets were used, all at 120 kV. Purpose To determine the effect of different tube potentials on the water-equivalent diameter (WED) and SSDE for patient CT scans of the head, chest, and abdomen. Materials and Methods This retrospective study used 250 noncontrast CT scans acquired between March 2013 and June 2017. Bony structures were segmented, and their CT numbers were modified to reflect bone attenuation at 70, 90, 110, 130, and 150 kV. Soft-tissue CT numbers were unchanged because of negligible energy dependence. fsize was measured in anthropomorphic phantoms for each tube potential and fit to an exponential function. WED and SSDE were determined for each patient at all tube potentials, regression analysis was performed relative to the WED and SSDE at 120 kV, and mean differences relative to 120 kV were calculated. Results In 250 patients (median age, 21.5 years; interquartile range, 44 years; 130 women), WED for all tube potentials was linearly related to the WED at 120 kV in all body regions (R2 = 0.995-1.000). The effect of tube potential on WED was negligible for torso examinations (Cohen d < 0.05). In the head, a medium effect size was observed at 70 kV; however, the mean absolute difference in WED was small (-0.49 cm ± 0.08 [standard deviation]; P < .001). For commonly used combinations of tube potential and patient size, the mean differences in SSDE at alternative tube potentials relative to SSDE at 120 kV were less than 5%. Conclusion At noncontrast CT, published size-dependent conversion factors accurately determined size-specific dose estimates on 250 patient scans at five tube potentials other than 120 kV. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Boone in this issue.


Asunto(s)
Tomografía Computarizada por Rayos X , Agua , Adulto , Femenino , Humanos , Masculino , Fantasmas de Imagen , Dosis de Radiación , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Adulto Joven
19.
Radiology ; 303(1): 130-138, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34904876

RESUMEN

Background The first clinical CT system to use photon-counting detector (PCD) technology has become available for patient care. Purpose To assess the technical performance of the PCD CT system with use of phantoms and representative participant examinations. Materials and Methods Institutional review board approval and written informed consent from four participants were obtained. Technical performance of a dual-source PCD CT system was measured for standard and high-spatial-resolution (HR) collimations. Noise power spectrum, modulation transfer function, section sensitivity profile, iodine CT number accuracy in virtual monoenergetic images (VMIs), and iodine concentration accuracy were measured. Four participants were enrolled (between May 2021 and August 2021) in this prospective study and scanned using similar or lower radiation doses as their respective clinical examinations performed on the same day using energy-integrating detector (EID) CT. Image quality and findings from the participants' PCD CT and EID CT examinations were compared. Results All standard technical performance measures met accreditation and regulatory requirements. Relative to filtered back-projection reconstructions, images from iterative reconstruction had lower noise magnitude but preserved noise power spectrum shape and peak frequency. Maximum in-plane spatial resolutions of 125 and 208 µm were measured for HR and standard PCD CT scans, respectively. Minimum values for section sensitivity profile full width at half maximum measurements were 0.34 mm (0.2-mm nominal section thickness) and 0.64 mm (0.4-mm nominal section thickness) for HR and standard PCD CT scans, respectively. In a 120-kV standard PCD CT scan of a 40-cm phantom, VMI iodine CT numbers had a mean percentage error of 5.7%, and iodine concentration had root mean squared error of 0.5 mg/cm3, similar to previously reported values for EID CT. VMIs, iodine maps, and virtual noncontrast images were created for a coronary CT angiogram acquired with 66-msec temporal resolution. Participant PCD CT images showed up to 47% lower noise and/or improved spatial resolution compared with EID CT. Conclusion Technical performance of clinical photon-counting detector (PCD) CT is improved relative to that of a current state-of-the-art CT system. The dual-source PCD geometry facilitated 66-msec temporal resolution multienergy cardiac imaging. Study participant images illustrated the effect of the improved technical performance. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Willemink and Grist in this issue.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Fotones , Estudios Prospectivos , Tomografía Computarizada por Rayos X/métodos
20.
Eur Radiol ; 32(10): 7079-7086, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35689699

RESUMEN

OBJECTIVE: To evaluate ultra-high-resolution (UHR) imaging of large joints using an investigational photon-counting detector (PCD) CT. MATERIALS AND METHODS: Patients undergoing clinical shoulder or pelvis energy-integrating-detector (EID) CT exam were scanned using the UHR mode of the PCD-CT system. Axial EID-CT images (1-mm sections) and PCD-CT images (0.6-mm sections) were reconstructed using Br62/Br64 and Br76 kernels, respectively. Two musculoskeletal radiologists rated visualization of anatomic structures using a 5-point Likert scale. Wilcoxon rank-sum test was used for statistical analysis of reader scores, and paired t-test was used for comparing bone CT numbers and image noise from PCD-CT and EID-CT. RESULTS: Thirty-two patients (17 shoulders and 15 pelvis) were prospectively recruited for this feasibility study. Mean age for shoulder exams was 67.3 ± 15.5 years (11 females) and 47.2 ± 15.8 years (11 females) for pelvis exams. The mean volume CT dose index was lower on PCD-CT compared to that on EID-CT (shoulders: 18 mGy vs. 34 mGy, pelvis: 11.6 mGy vs. 16.7 mGy). PCD-CT was rated significantly better than EID-CT (p < 0.001) for anatomic-structure visualization. Trabecular delineation in shoulders (mean score = 4.24 ± 0.73) and femoroacetabular joint visualization in the pelvis (mean score = 3.67 ± 1.03) received the highest scores. PCD-CT demonstrated significant increase in bone CT number (p < 0.001) relative to EID-CT; no significant difference in image noise was found between PCD-CT and EID-CT. CONCLUSION: The evaluated PCD-CT system provided improved visualization of osseous structures in the shoulders and pelvises at a 31-47% lower radiation dose compared to EID-CT. KEY POINTS: • A full field-of-view PCD-CT with 0.151 mm × 0.176 mm detector pixel size (isocenter) facilitates bilateral, high-resolution imaging of shoulders and pelvis. • The evaluated investigational PCD-CT system was rated superior by two musculoskeletal radiologists for anatomic structure visualization in shoulders and pelvises despite a 31-47% lower radiation dose compared to EID-CT. • PCD-CT demonstrated significantly higher bone CT number compared to EID-CT, while no significant difference in image noise was observed between PCD-CT and EID-CT despite a 31-47% dose reduction on PCD-CT.


Asunto(s)
Fotones , Hombro , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA