RESUMEN
AIMS/HYPOTHESIS: Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines. The current study evaluated the safety and immunogenicity of the first human vaccine designed against CVBs associated with type 1 diabetes in a double-blind randomised placebo-controlled Phase I trial. METHODS: The main eligibility criteria for participants were good general health, age between 18 and 45 years, provision of written informed consent and willingness to comply with all trial procedures. Treatment allocation (PRV-101 or placebo) was based on a computer-generated randomisation schedule and people assessing the outcomes were masked to group assignment. In total, 32 participants (17 men, 15 women) aged 18-44 years were randomised to receive a low (n=12) or high (n=12) dose of a multivalent, formalin-inactivated vaccine including CVB serotypes 1-5 (PRV-101), or placebo (n=8), given by intramuscular injections at weeks 0, 4 and 8 at a single study site in Finland. The participants were followed for another 24 weeks. Safety and tolerability were the primary endpoints. Anti-CVB IgG and virus-neutralising titres were analysed using an ELISA and neutralising plaque reduction assays, respectively. RESULTS: Among the 32 participants (low dose, n=12; high dose, n=12; placebo, n=8) no serious adverse events or adverse events leading to study treatment discontinuation were observed. Treatment-emergent adverse events considered to be related to the study drug occurred in 37.5% of the participants in the placebo group and 62.5% in the PRV-101 group (injection site pain, headache, injection site discomfort and injection site pruritus being most common). PRV-101 induced dose-dependent neutralising antibody responses against all five CVB serotypes included in the vaccine in both the high- and low-dose groups. Protective titres ≥8 against all five serotypes were seen in >90% of participants over the entire follow-up period. CONCLUSIONS/INTERPRETATION: The results indicate that the tested multivalent CVB vaccine is well tolerated and immunogenic, supporting its further clinical development. TRIAL REGISTRATION: ClinicalTrials.gov NCT04690426. FUNDING: This trial was funded by Provention Bio, a Sanofi company.
Asunto(s)
Diabetes Mellitus Tipo 1 , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Método Doble Ciego , Vacunación , Vacunas CombinadasRESUMEN
BACKGROUND: Mass vaccination campaigns to prevent coronavirus disease 2019 (Covid-19) are occurring in many countries; estimates of vaccine effectiveness are urgently needed to support decision making. A countrywide mass vaccination campaign with the use of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (CoronaVac) was conducted in Chile starting on February 2, 2021. METHODS: We used a prospective national cohort, including participants 16 years of age or older who were affiliated with the public national health care system, to assess the effectiveness of the inactivated SARS-CoV-2 vaccine with regard to preventing Covid-19 and related hospitalization, admission to the intensive care unit (ICU), and death. We estimated hazard ratios using the extension of the Cox proportional-hazards model, accounting for time-varying vaccination status. We estimated the change in the hazard ratio associated with partial immunization (≥14 days after receipt of the first dose and before receipt of the second dose) and full immunization (≥14 days after receipt of the second dose). Vaccine effectiveness was estimated with adjustment for individual demographic and clinical characteristics. RESULTS: The study was conducted from February 2 through May 1, 2021, and the cohort included approximately 10.2 million persons. Among persons who were fully immunized, the adjusted vaccine effectiveness was 65.9% (95% confidence interval [CI], 65.2 to 66.6) for the prevention of Covid-19 and 87.5% (95% CI, 86.7 to 88.2) for the prevention of hospitalization, 90.3% (95% CI, 89.1 to 91.4) for the prevention of ICU admission, and 86.3% (95% CI, 84.5 to 87.9) for the prevention of Covid-19-related death. CONCLUSIONS: Our results suggest that the inactivated SARS-CoV-2 vaccine effectively prevented Covid-19, including severe disease and death, a finding that is consistent with results of phase 2 trials of the vaccine. (Funded by Agencia Nacional de Investigación y Desarrollo and others.).
Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Vacunación Masiva , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , COVID-19/mortalidad , Chile/epidemiología , Femenino , Hospitalización/estadística & datos numéricos , Humanos , Incidencia , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Estudios Prospectivos , Resultado del Tratamiento , Vacunas de Productos Inactivados , Adulto JovenRESUMEN
The DNA damage response avoids mutations into dividing cells. Here, we analysed the role of photoreceptors on the restriction of root growth imposed by genotoxic agents and its relationship with cell viability and performance of meristems. Comparison of root growth of Arabidopsis WT, phyA-211, phyB-9, and phyA-211phyB-9 double mutants unveiled a critical role for phytochrome A (PhyA) in protecting roots from genotoxic stress, regeneration and cell replenishment in the meristematic zone. PhyA was located on primary root tips, where it influences genes related to the repair of DNA, including ERF115 and RAD51. Interestingly, phyA-211 mutants treated with zeocin failed to induce the expression of the repressor of cell cycle MYB3R3, which correlated with expression of the mitotic cyclin CycB1, suggesting that PhyA is required for safeguarding the DNA integrity during cell division. Moreover, the growth of the primary roots of PhyA downstream component HY5 and root growth analyses in darkness suggest that cell viability and DNA damage responses within root meristems may act independently from light and photomorphogenesis. These data support novel roles for PhyA as a key player for stem cell niche maintenance and DNA damage responses, which are critical for proper root growth.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular , ADN/metabolismo , Reparación del ADN/genética , Luz , Meristema/genética , Meristema/metabolismo , Mutación , Fitocromo/metabolismo , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismoRESUMEN
BACKGROUND: Dental fluorosis (DF) is caused by excessive exposure to fluoride during odontogenesis and leads to various changes in the development of tooth enamel. Some regions in Mexico are considered endemic fluorosis zones due to the high fluoride content in drinking water. The objective of this study was to perform a systematic review and meta-analysis to identify the association between the concentration of fluoride in drinking water and the severity of dental fluorosis in northern and western Mexico. METHODS: This protocol was registered in the PROSPERO database (ID: CRD42023401519). The search for information was carried out in the PubMed/Medline, Scopus, SpringerLink, and Google Scholar databases between January 2015 and October 2023. The overall relative risk was calculated using the inverse of variance approach with the random effects method. The RoB 2.0 tool was used to construct risk plots. RESULTS: Eleven articles were analyzed qualitatively, and most of the included studies presented at least one level of DF severity; six articles were analyzed quantitatively, dividing them into two regions. In North region it was observed a higher prevalence of severe TF cases, corresponding to ≥ TF 5 category (4.78) [3.55, 6.42]. In the West region, most of the included studies presented a higher prevalence of less severe cases, corresponding to ≤ TF 4, in comparison with the North region (0.01) [0.00, 0.52], interpreted as a protective effect. CONCLUSION: The concentrations of fluorides in drinking water are reportedly high in these regions and are directly related to the severity of dental fluorosis experienced by the inhabitants. In the Northern region exists a major concentration of fluoride in drinking water compared with the Western region as well as a prevalence of higher severity cases of dental fluorosis.
Asunto(s)
Agua Potable , Fluoruros , Fluorosis Dental , Fluorosis Dental/epidemiología , Fluorosis Dental/etiología , Humanos , México/epidemiología , Fluoruros/análisis , Fluoruros/efectos adversos , Agua Potable/química , Índice de Severidad de la Enfermedad , PrevalenciaRESUMEN
Background and objectives: The development of the oral microbiome begins in the prenatal stage. Breast milk contains antimicrobial proteins, microorganisms, metabolites, enzymes, and immunoglobulins, among others; therefore, differences have been noted in the type of microorganisms that colonize the oral cavity of children who are breastfed compared to those who are formula-fed. Our objective was to establish the relationship between breastfeeding, formula feeding, or mixed feeding (breastfeeding and formula) with the presence of S. mutans in a population of children under 6 months of age. Materials and Methods: The patients were recruited from the Child Care Center of Ciudad Juárez, Chihuahua, and from the pediatric dentistry postgraduate clinics of the Autonomous University of Ciudad Juárez; children exclusively fed maternally, with formula, and/or mixed were included. Those who had been fed within the previous hour were excluded. The sample was taken with a smear of the jugal groove using a sterile micro-brush. For the identification of Streptococcus mutans, a culture of Mitis Salivarius Agar (Millipore) was used. Results: 53.3% corresponded to females and 46.7% to males, 36.7% corresponded to maternal feeding, 23.3% corresponded to formula feeding, and 40% corresponded to mixed feeding. In 90% of the infants, the parents indicated that they did not perform oral hygiene. The CFU count showed that infants who were exclusively breastfed had an average of 9 × 10 CF/mL, formula-fed infants had an average of 78 × 10 CFU/mL, and those who had mixed feeding 21 × 10 CFU/mL. Conclusions: According to the results obtained, it was possible to corroborate that exclusive breastfeeding limits the colonization of Streptococcus mutans compared to those infants who receive formula or mixed feeding; these results could have a clinical impact on the dental health of infants by having a lower presence of one of the main etiological factors involved in dental caries and the type of microbiome established in the oral cavity.
Asunto(s)
Lactancia Materna , Leche Humana , Boca , Streptococcus mutans , Humanos , Streptococcus mutans/aislamiento & purificación , Leche Humana/microbiología , Femenino , Lactante , Masculino , Boca/microbiología , Fórmulas Infantiles/estadística & datos numéricos , Recién NacidoRESUMEN
Mitragyna speciosa ("kratom") is used as a natural remedy for pain and management of opioid dependence. The pharmacological properties of kratom have been linked to a complex mixture of monoterpene indole alkaloids, most notably mitragynine. Here, we report the central biosynthetic steps responsible for the scaffold formation of mitragynine and related corynanthe-type alkaloids. We illuminate the mechanistic basis by which the key stereogenic center of this scaffold is formed. These discoveries were leveraged for the enzymatic production of mitragynine, the C-20 epimer speciogynine, and fluorinated analogues.
Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Estereoisomerismo , MonoterpenosRESUMEN
BACKGROUND & AIMS: Complex portal vein thrombosis (PVT) is a challenge in liver transplantation (LT). Extra-anatomical approaches to portal revascularization, including renoportal (RPA), left gastric vein (LGA), pericholedochal vein (PCA), and cavoportal (CPA) anastomoses, have been described in case reports and series. The RP4LT Collaborative was created to record cases of alternative portal revascularization performed for complex PVT. METHODS: An international, observational web registry was launched in 2020. Cases of complex PVT undergoing first LT performed with RPA, LGA, PCA, or CPA were recorded and updated through 12/2021. RESULTS: A total of 140 cases were available for analysis: 74 RPA, 18 LGA, 20 PCA, and 28 CPA. Transplants were primarily performed with whole livers (98%) in recipients with median (IQR) age 58 (49-63) years, model for end-stage liver disease score 17 (14-24), and cold ischemia 431 (360-505) minutes. Post-operatively, 49% of recipients developed acute kidney injury, 16% diuretic-responsive ascites, 9% refractory ascites (29% with CPA, p <0.001), and 10% variceal hemorrhage (25% with CPA, p = 0.002). After a median follow-up of 22 (4-67) months, patient and graft 1-/3-/5-year survival rates were 71/67/61% and 69/63/57%, respectively. On multivariate Cox proportional hazards analysis, the only factor significantly and independently associated with all-cause graft loss was non-physiological portal vein reconstruction in which all graft portal inflow arose from recipient systemic circulation (hazard ratio 6.639, 95% CI 2.159-20.422, p = 0.001). CONCLUSIONS: Alternative forms of portal vein anastomosis achieving physiological portal inflow (i.e., at least some recipient splanchnic blood flow reaching transplant graft) offer acceptable post-transplant results in LT candidates with complex PVT. On the contrary, non-physiological portal vein anastomoses fail to resolve portal hypertension and should not be performed. IMPACT AND IMPLICATIONS: Complex portal vein thrombosis (PVT) is a challenge in liver transplantation. Results of this international, multicenter analysis may be used to guide clinical decisions in transplant candidates with complex PVT. Extra-anatomical portal vein anastomoses that allow for at least some recipient splanchnic blood flow to the transplant allograft offer acceptable results. On the other hand, anastomoses that deliver only systemic blood flow to the allograft fail to resolve portal hypertension and should not be performed.
Asunto(s)
Enfermedad Hepática en Estado Terminal , Várices Esofágicas y Gástricas , Hipertensión Portal , Trasplante de Hígado , Trombosis de la Vena , Humanos , Persona de Mediana Edad , Vena Porta/cirugía , Trasplante de Hígado/métodos , Enfermedad Hepática en Estado Terminal/complicaciones , Várices Esofágicas y Gástricas/complicaciones , Ascitis/complicaciones , Hemorragia Gastrointestinal , Índice de Severidad de la Enfermedad , Hipertensión Portal/complicaciones , Hipertensión Portal/cirugía , Trombosis de la Vena/etiología , Trombosis de la Vena/cirugíaRESUMEN
Mitragynine, an opioidergic alkaloid present in Mitragyna speciosa (kratom), is metabolized by cytochrome P450 3A (CYP3A) to 7-hydroxymitragynine, a more potent opioid receptor agonist. The extent to which conversion to 7-hydroxymitragynine mediates the in vivo effects of mitragynine is unclear. The current study examined how CYP3A inhibition (ketoconazole) modifies the pharmacokinetics of mitragynine in rat liver microsomes in vitro. The study further examined how ketoconazole modifies the discriminative stimulus and antinociceptive effects of mitragynine in rats. Ketoconazole [30 mg/kg, oral gavage (o.g.)] increased systemic exposure to mitragynine (13.3 mg/kg, o.g.) by 120% and 7-hydroxymitragynine exposure by 130%. The unexpected increase in exposure to 7-hydroxymitragynine suggested that ketoconazole inhibits metabolism of both mitragynine and 7-hydroxymitragynine, a finding confirmed in rat liver microsomes. In rats discriminating 3.2 mg/kg morphine from vehicle under a fixed-ratio schedule of food delivery, ketoconazole pretreatment increased the potency of both mitragynine (4.7-fold) and 7-hydroxymitragynine (9.7-fold). Ketoconazole did not affect morphine's potency. Ketoconazole increased the antinociceptive potency of 7-hydroxymitragynine by 4.1-fold. Mitragynine (up to 56 mg/kg, i.p.) lacked antinociceptive effects both in the presence and absence of ketoconazole. These results suggest that both mitragynine and 7-hydroxymitragynine are cleared via CYP3A and that 7-hydroxymitragynine is formed as a metabolite of mitragynine by other routes. These results have implications for kratom use in combination with numerous medications and citrus juices that inhibit CYP3A. SIGNIFICANCE STATEMENT: Mitragynine is an abundant kratom alkaloid that exhibits low efficacy at the µ-opioid receptor (MOR). Its metabolite, 7-hydroxymitragynine, is also an MOR agonist but with higher affinity and efficacy than mitragynine. Our results in rats demonstrate that cytochrome P450 3A (CYP3A) inhibition can increase the systematic exposure of both mitragynine and 7-hydroxymitragynine and their potency to produce MOR-mediated behavioral effects. These data highlight potential interactions between kratom and CYP3A inhibitors, which include numerous medications and citrus juices.
Asunto(s)
Citocromo P-450 CYP3A , Alcaloides de Triptamina Secologanina , Ratas , Animales , Cetoconazol/farmacología , Alcaloides de Triptamina Secologanina/metabolismo , Morfina/farmacología , Analgésicos Opioides/farmacologíaRESUMEN
The responses of marine species to environmental changes and anthropogenic pressures (e.g., fishing) interact with ecological and evolutionary processes that are not well understood. Knowledge of changes in the distribution range and genetic diversity of species and their populations into the future is essential for the conservation and sustainable management of resources. Almaco jack (Seriola rivoliana) is a pelagic fish with high importance to fisheries and aquaculture in the Pacific Ocean. In this study, we assessed contemporary genomic diversity and structure in loci that are putatively under selection (outlier loci) and determined their potential functions. Using a combination of genotype-environment association, spatial distribution models, and demogenetic simulations, we modeled the effects of climate change (under three different RCP scenarios) and fishing pressure on the species' geographic distribution and genomic diversity and structure to 2050 and 2100. Our results show that most of the outlier loci identified were related to biological and metabolic processes that may be associated with temperature and salinity. The contemporary genomic structure showed three populations-two in the Eastern Pacific (Cabo San Lucas and Eastern Pacific) and one in the Central Pacific (Hawaii). Future projections suggest a loss of suitable habitat and potential range contractions for most scenarios, while fishing pressure decreased population connectivity. Our results suggest that future climate change scenarios and fishing pressure will affect the genomic structure and genotypic composition of S. rivoliana and lead to loss of genomic diversity in populations distributed in the eastern-central Pacific Ocean, which could have profound effects on fisheries that depend on this resource.
Las respuestas de las especies marinas ante los cambios ambientales y presiones antropogénicas (por ejemplo, la sobrepesca) interactúan con procesos ecológicos y evolutivos que no se comprenden bien. El conocimiento del cambio en el rango de distribución y la diversidad genética de las especies y sus poblaciones en el futuro es fundamental para la conservación y gestión sostenible de los recursos. El jurel (Seriola rivoliana) es un pez pelágico de gran importancia para la pesca y la acuicultura en el Océano Pacífico. En este estudio, evaluamos la diversidad y estructura genómica contemporánea en loci que supuestamente están bajo selección (loci atípicos) y determinamos sus funciones potenciales. Se utilizó la combinación de métodos de asociación genotipo-ambiente, modelos de distribución espacial y simulaciones demogenéticas, para modelar los efectos del cambio climático (bajo tres escenarios RCP diferentes) y presión de pesca sobre la distribución geográfica de la especie, la diversidad y estructura genómica para los años 2050 y 2100. Nuestros resultados mostraron que la mayoría de los loci atípicos están relacionados con procesos biológicos y metabólicos que pueden estar asociados con la temperatura y la salinidad. La estructura genómica contemporánea mostró tres poblaciones: dos en el Pacífico oriental (Cabo San Lucas y el Pacífico oriental) y una en el Pacífico central (Hawai). Las proyecciones futuras sugieren una pérdida de hábitat idóneo y posibles contracciones del área de distribución para la mayoría de los escenarios, mientras que la presión de la pesca redujo la conectividad de las poblaciones. Nuestros resultados sugieren que los escenarios de cambio climático y la presión pesquera afectarán la estructura genómica y la composición genotípica de S. rivoliana y conducirán a la pérdida de diversidad genómica en las poblaciones distribuidas en el Océano Pacífico centro-oriental, lo que podría tener efectos en las pesquerías que dependen de este recurso.
Asunto(s)
Caza , Perciformes , Animales , Cambio Climático , Océano Pacífico , Genotipo , Genómica , Explotaciones Pesqueras , EcosistemaRESUMEN
This work provides the first description of the synthesis and characterization of water-soluble chitosan (Cs) derivatives based on the conjugation of both diethylaminoethyl (DEAE) and catechol groups onto the Cs backbone (Cs-DC) in order to obtain a Cs derivative with antioxidant and antimicrobial properties. The degree of substitution [DS (%)] was 35.46% for DEAE and 2.53% for catechol, determined by spectroscopy. Changes in the molecular packing due to the incorporation of both pendant groups were described by X-ray diffraction and thermogravimetric analysis. For Cs, the crystallinity index was 59.46% and the maximum decomposition rate appeared at 309.3 °C, while for Cs-DC, the values corresponded to 16.98% and 236.4 °C, respectively. The incorporation of DEAE and catechol groups also increases the solubility of the polymer at pH > 7 without harming the antimicrobial activity displayed by the unmodified polymer. The catecholic derivatives increase the radical scavenging activity in terms of the half-maximum effective concentration (EC50). An EC50 of 1.20 µg/mL was found for neat hydrocaffeic acid (HCA) solution, while for chitosan-catechol (Cs-Ca) and Cs-DC solutions, concentrations equivalent to free HCA of 0.33 and 0.41 µg/mL were required, respectively. Cell culture results show that all Cs derivatives have low cytotoxicity, and Cs-DC showed the ability to reduce the activity of reactive oxygen species by 40% at concentrations as low as 4 µg/mL. Polymeric nanoparticles of Cs derivatives with a hydrodynamic diameter (Dh) of around 200 nm, unimodal size distributions, and a negative ζ-potential were obtained by ionotropic gelation and coated with hyaluronic acid in aqueous suspension, providing the multifunctional nanoparticles with higher stability and a narrower size distribution.
Asunto(s)
Antiinfecciosos , Quitosano , Nanopartículas , Quitosano/farmacología , Quitosano/química , Polímeros/farmacología , Catecoles/farmacología , Catecoles/química , Nanopartículas/química , Antiinfecciosos/farmacologíaRESUMEN
Central venous obstruction in the cardiac implantable electronic devices (CIED) population is commonly due to thrombosis and fibrosis secondary to the passage of pre-existing leads. However, vein occlusion before CIED implantation is uncommon, and one cause is retrosternal goiters. We report a case where the failure of the initial implantation of a primary CIED led to an unusual implantation route without goiter excision. The patient had an indication for cardiac resynchronization therapy (CRT) given his left ventricular (LV) function was impaired and had second-degree heart block Mobitz Type II; however, he had occluded bilateral subclavian veins due to a sizeable retrosternal goiter. This obstruction led to the implantation of a single lead pacemaker via the right femoral vein after multiple failed attempts at CRT, dual chamber pacemaker and left bundle branch area pacing (LBBaP).
RESUMEN
Dimorphic species of Mucor, which are cosmopolitan fungi belonging to subphylum Mucoromycotina, are metabolically versatile. Some species of Mucor are sources of biotechnological products, such as biodiesel from Mucor circinelloides and expression of heterologous proteins from Mucor lusitanicus. Furthermore, Mucor lusitanicus has been described as a model for understanding mucormycosis infections. However, little is known regarding the relationship between Mucor lusitanicus and other soil inhabitants. In this study, we investigated the potential use of Mucor lusitanicus as a biocontrol agent against fungal phytopathogens, namely Fusarium oxysporum f. sp. lycopersici, Fusarium solani, and Alternaria solani, which destroy economically important crops. Results showed that aerobic cell-free supernatants of the culture broth (SS) from Mucor lusitanicus inhibited the growth of the fungal phytopathogens in culture, soil, and tomato fruits. The SS obtained from a strain of Mucor lusitanicus carrying the deletion of rfs gene, which encodes an enzyme involved in the synthesis of siderophore rhizoferrin, had a decreased inhibitory effect against the growth of the phytopathogens. Contrarily, this inhibitory effect was more evident with the SS from an rfs-overexpressing strain compared to the wild-type. This study provides a framework for the potential biotechnological use of the molecules secreted from Mucor lusitanicus in the biocontrol of fungal phytopathogens.
Asunto(s)
Mucor , Mucormicosis , Mucor/genética , Sideróforos , Mucormicosis/microbiología , Enfermedades de las PlantasRESUMEN
Quinoa is an expanding crop in southern Spain. Downy mildew, caused by Peronospora variabilis, is the most important quinoa disease in Spain and worldwide. In Spain, this disease has also been observed on the weed Chenopodium album. The objectives of this study were to unravel the origin of the P. variabilis isolates currently infecting quinoa in southern Spain and to study their genetic diversity. We hypothesized that P. variabilis isolates infecting quinoa in Spain could have been introduced through the seeds of the quinoa varieties currently grown in the country or, alternatively, that these isolates are endemic isolates, originally infecting C. album, that jumped to quinoa. In order to test these hypotheses, we sequenced the internal transcribed spacer (ITS), cytochrome c oxidase subunit 1 (cox1), and cox2 regions of 33 P. variabilis isolates infecting C. quinoa and C. album in southern Spain and analyzed their phylogenetic relationship with isolates present in other countries infecting Chenopodium spp. cox1 gene sequences from all of the Spanish P. variabilis isolates were identical and exhibited nine single-nucleotide polymorphisms (SNPs) compared with a single P. variabilis cox1 sequence found at GenBank. Phylogenetic analyses based on the ITS ribosomal DNA region were not suitable to differentiate isolates according to their geographical origin or host. The cox2 sequences from P. variabilis Spanish isolates collected from C. quinoa and C. album were all identical and had a distinctive SNP in the last of four polymorphic sites that distinguished Spanish isolates from isolates from other countries. These results suggest that P. variabilis infecting quinoa in southern Spain could be native isolates that originally infected C. album.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Asunto(s)
Chenopodium album , Chenopodium quinoa , Peronospora , Chenopodium quinoa/genética , Peronospora/genética , Chenopodium album/genética , España , Filogenia , Ciclooxigenasa 2/genética , ADN IntergénicoRESUMEN
Cannabidiol (CBD) is a major phytocannabinoid present in Cannabis sativa (Linneo, 1753). This naturally occurring secondary metabolite does not induce intoxication or exhibit the characteristic profile of drugs of abuse from cannabis like Δ9-tetrahydrocannabinol (∆9-THC) does. In contrast to ∆9-THC, our knowledge of the neuro-molecular mechanisms of CBD is limited, and its pharmacology, which appears to be complex, has not yet been fully elucidated. The study of the pharmacological effects of CBD has grown exponentially in recent years, making it necessary to generate frequently updated reports on this important metabolite. In this article, a rationalized integration of the mechanisms of action of CBD on molecular targets and pharmacological implications in animal models and human diseases, such as epilepsy, pain, neuropsychiatric disorders, Alzheimer's disease, and inflammatory diseases, are presented. We identify around 56 different molecular targets for CBD, including enzymes and ion channels/metabotropic receptors involved in neurologic conditions. Herein, we compiled the knowledge found in the scientific literature on the multiple mechanisms of actions of CBD. The in vitro and in vivo findings are essential for fully understanding the polypharmacological nature of this natural product.
Asunto(s)
Cannabidiol , Cannabis , Epilepsia , Animales , Humanos , Cannabidiol/farmacología , Cannabidiol/metabolismo , Cannabis/metabolismo , Epilepsia/tratamiento farmacológico , Agonistas de Receptores de Cannabinoides , Dolor , Dronabinol/farmacologíaRESUMEN
Iberian ibex (Capra pyrenaica) is an ecologically and economically relevant medium-sized emblematic mountain ungulate. Diseases participate in the population dynamics of the species as a regulating agent, but can also threaten the conservation and viability of vulnerable population units. Moreover, Iberian ibex can also be a carrier or even a reservoir of pathogens shared with domestic animals and/or humans, being therefore a concern for livestock and public health. The objective of this review is to compile the currently available knowledge on (1) diseases of Iberian ibex, presented according to their relevance on the health and demography of free-ranging populations; (2) diseases subjected to heath surveillance plans; (3) other diseases reported in the species; and (4) diseases with particular relevance in captive Iberian ibex populations. The systematic review of all the information on diseases affecting the species unveils unpublished reports, scientific communications in meetings, and scientific articles, allowing the first comprehensive compilation of Iberian ibex diseases. This review identifies the gaps in knowledge regarding pathogenesis, immune response, diagnostic methods, treatment, and management of diseases in Iberian ibex, providing a base for future research. Moreover, this challenges wildlife and livestock disease and wildlife population managers to assess the priorities and policies currently implemented in Iberian ibex health surveillance and monitoring and disease management.
RESUMEN
BACKGROUND: The length of hospital stay (LOS) for acute pulmonary embolism (PE) varies considerably. Whether the upfront use of a PE prognostic assessment and management pathway is effective in reducing the LOS remains unknown. METHODS: We conducted a randomised controlled trial of adults hospitalised for acute PE: patients were assigned either to a prognostic assessment and management pathway involving risk stratification followed by predefined criteria for mobilisation and discharge (intervention group) or to usual care (control group). The primary end-point was LOS. The secondary end-points were the cost of prognostic tests and of hospitalisation, and 30-day clinical outcomes. RESULTS: Of 500 patients who underwent randomisation, 498 were included in the modified intention-to-treat analysis. The median LOS was 4.0â days (interquartile range (IQR) 3.7-4.2â days) in the intervention group and 6.1â days (IQR 5.7-6.5â days) in the control group (p<0.001). The mean total cost of prognostic tests was EUR 174.76 in the intervention group, compared with EUR 233.12 in the control group (mean difference EUR -58.37, 95% CI EUR -84.34- to -32.40). The mean total hospitalisation cost per patient was EUR 2085.66 in the intervention group, compared with EUR 3232.97 in the control group (mean difference EUR -1147.31, 95% CI EUR -1414.97- to -879.65). No significant differences were observed in 30-day readmission (4.0% versus 4.8%), all-cause mortality (2.4% versus 2.0%) or PE-related mortality (0.8% versus 1.2%) rates. CONCLUSIONS: The use of a prognostic assessment and management pathway was effective in reducing the LOS for acute PE.
Asunto(s)
Readmisión del Paciente , Embolia Pulmonar , Enfermedad Aguda , Adulto , Humanos , Tiempo de Internación , Pronóstico , Embolia Pulmonar/tratamiento farmacológico , Embolia Pulmonar/terapiaRESUMEN
The primary kratom alkaloid mitragynine is proposed to act through multiple mechanisms, including actions at µ-opioid receptors (MORs) and adrenergic-α 2 receptors (Aα 2Rs), as well as conversion in vivo to a MOR agonist metabolite (i.e., 7-hydroxymitragynine). Aα 2R and MOR agonists can produce antinociceptive synergism. Here, contributions of both receptors to produce mitragynine-related effects were assessed by measuring receptor binding in cell membranes and, in rats, pharmacological behavioral effect antagonism studies. Mitragynine displayed binding affinity at both receptors, whereas 7-hydroxymitragynine only displayed MOR binding affinity. Compounds were tested for their capacity to decrease food-maintained responding and rectal temperature and to produce antinociception in a hotplate test. Prototypical MOR agonists and 7-hydroxymitragynine, but not mitragynine, produced antinociception. MOR agonist and 7-hydroxymitragynine rate-deceasing and antinociceptive effects were antagonized by the opioid antagonist naltrexone but not by the Aα 2R antagonist yohimbine. Hypothermia only resulted from reference Aα 2R agonists. The rate-deceasing and hypothermic effects of reference Aα 2R agonists were antagonized by yohimbine but not naltrexone. Neither naltrexone nor yohimbine antagonized the rate-decreasing effects of mitragynine. Mitragynine and 7-hydroxymitragynine increased the potency of the antinociceptive effects of Aα 2R but not MOR reference agonists. Only mitragynine produced hypothermic effects. Isobolographic analyses for the rate-decreasing effects of the reference Aα 2R and MOR agonists were also conducted. These results suggest mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα 2R and MOR agonists. When combined with Aα 2R agonists, mitragynine could also produce hypothermic synergism. SIGNIFICANCE STATEMENT: Mitragynine is proposed to target the µ-opioid receptor (MOR) and adrenergic-α2 receptor (Aα2R) and to produce behavioral effects through conversion to its MOR agonist metabolite 7-hydroxymitragynine. Isobolographic analyses indicated supra-additivity in some dose ratio combinations. This study suggests mitragynine and 7-hydroxymitragynine may produce antinociceptive synergism with Aα2R and MOR agonists. When combined with Aα2R agonists, mitragynine could also produce hypothermic synergism.
Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Animales , Ratas , Agonistas de Receptores Adrenérgicos alfa 2 , Analgésicos Opioides/farmacología , Mitragyna/química , Naltrexona/farmacología , Receptores Adrenérgicos alfa 2 , Receptores Opioides mu/agonistas , Alcaloides de Triptamina Secologanina/farmacología , Yohimbina/farmacologíaRESUMEN
Kratom (Mitragyna speciosa), a Southeast Asian tree, has been used for centuries in pain relief and mitigation of opium withdrawal symptoms. Mitragynine (MTG), the major kratom alkaloid, is being investigated for its potential to provide analgesia without the deleterious effects associated with typical opioids. Concerns have been raised regarding the active metabolite of MTG, 7-hydroxymitragynine (7HMG), which has higher affinity and efficacy at µ-opioid receptors than MTG. Here we investigated the hotplate antinociception, pharmacokinetics, and tissue distribution of MTG and 7HMG at equianalgesic oral doses in male and female C57BL/6 mice to determine the extent to which 7HMG metabolized from MTG accounts for the antinociceptive effects of MTG and investigate any sex differences. The mechanism of action was examined by performing studies with the opioid receptor antagonist naltrexone. A population pharmacokinetic/pharmacodynamic model was developed to predict the behavioral effects after administration of various doses of MTG and 7HMG. When administered alone, 7HMG was 2.8-fold more potent than MTG to produce antinociception. At equivalent effective doses of MTG and 7HMG, there was a marked difference in the maximum brain concentration of 7HMG achieved, i.e., 11-fold lower as a metabolite of MTG. The brain concentration of 7HMG observed 4 hours post administration, producing an analgesic effect <10%, was still 1.5-fold higher than the maximum concentration of 7HMG as a metabolite of MTG. These results provide strong evidence that 7HMG has a negligible role in the antinociceptive effects of MTG in mice. SIGNIFICANCE STATEMENT: Mitragynine (MTG) is being investigated for its potential to aid in pain relief, opioid withdrawal syndrome, and opioid use disorder. The active metabolite of MTG, 7-hydroxymitragynine (7HMG), has been shown to have abuse potential and has been implicated in the opioid-like analgesic effect after MTG administration. The results of this study suggest a lack of involvement of 7HMG in the antinociceptive effects of MTG in mice.
Asunto(s)
Alcaloides de Triptamina Secologanina , Analgésicos Opioides/farmacología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Alcaloides de Triptamina Secologanina/farmacologíaRESUMEN
Monoamine oxidase inhibitors (MAOIs) are an important class of drugs prescribed for treatment of depression and other neurological disorders. Evidence has suggested that patients with atypical depression preferentially respond to natural product MAOIs. This review presents a comprehensive survey of the natural products, predominantly from plant sources, as potential new MAOI drug leads. The psychoactive properties of several traditionally used plants and herbal formulations were attributed to their MAOI constituents. MAO inhibitory constituents may also be responsible for neuroprotective effects of natural products. Different classes of MAOIs were identified from the natural product sources with non-selective as well as selective inhibition of MAO-A and -B. Selective reversible natural product MAOIs may be safer alternatives to the conventional MAOI drugs. Characterization of MAO inhibitory constituents of natural products traditionally used as psychoactive preparations or for treatment of neurological disorders may help in understanding the mechanism of action, optimization of these preparations for desired bioactive properties, and improvement of the therapeutic potential. Potential therapeutic application of natural product MAOIs for treatment of neuroblastoma is also discussed.
Asunto(s)
Productos Biológicos , Enfermedades del Sistema Nervioso , Neuroblastoma , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Monoaminooxidasa , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , NeuroprotecciónRESUMEN
Background and Objectives: Streptococcus mutans (S. mutans) is the main microorganism associated with the presence of dental caries and specific serotypes of this bacteria have been related to several systemic diseases limiting general health. In orthodontics, white spot lesions (WSL), represent a great challenge for clinicians due to the great fluctuation of their prevalence and incidence during conventional orthodontic treatments. Although silver nanoparticles (AgNP) have been demonstrated to have great antimicrobial properties in several microorganisms, including S. mutans bacteria, there is no available information about anti adherence and antimicrobial properties of AgNP exposed to two of the most relevant serotypes of S. mutans adhered on orthodontic materials used for conventional therapeutics. The objective of this study was to determine anti-adherence and antimicrobial levels of AgNP against serotypes c and k of S. mutans on conventional orthodontic appliances. Materials and Methods: An AgNP solution was prepared and characterized using dispersion light scattering (DLS) and transmission electron microscopy (TEM). Antimicrobial and anti-adherence activities of AgNP were determined using minimal inhibitory concentrations (MIC) and bacterial adherence testing against serotypes c and k of S. mutans clinically isolated and confirmed by PCR assay. Results: The prepared AgNP had spherical shapes with a good size distribution (29.3 ± 0.7 nm) with negative and well-defined electrical charges (−36.5 ± 5.7 mV). AgNP had good bacterial growth (55.7 ± 19.3 µg/mL for serotype c, and 111.4 ± 38.6 µg/mL for serotype k) and adherence inhibitions for all bacterial strains and orthodontic wires (p < 0.05). The serotype k showed statistically the highest microbial adherence (p < 0.05). The SS wires promoted more bacterial adhesion (149.0 ± 253.6 UFC/mL × 104) than CuNiTi (3.3 ± 6.0 UFC/mL × 104) and NiTi (101.1 ± 108.5 UFC/mL × 104) arches. SEM analysis suggests CuNiTi wires demonstrated better topographical conditions for bacterial adherence while AFM evaluation determined cell wall irregularities in bacterial cells exposed to AgNP. Conclusions: This study suggests the widespread use of AgNP as a potential anti-adherent and antimicrobial agent for the prevention of WSL during conventional orthodontic therapies and, collaterally, other systemic diseases.