Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(7): 1502-1514.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37160117

RESUMEN

Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-ɑ (IL-3Rɑ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3Rɑ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.


Asunto(s)
Esclerosis Múltiple , Animales , Humanos , Ratones , Sistema Nervioso Central , Interleucina-3 , Microglía , Neuroglía/metabolismo
2.
Clin Chem Lab Med ; 62(2): 322-331, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702323

RESUMEN

OBJECTIVES: Neurofilament light chain (NfL) has emerged as a promising biomarker for detecting and monitoring axonal injury. Until recently, NfL could only be reliably measured in cerebrospinal fluid, but digital single molecule array (Simoa) technology has enabled its precise measurement in blood samples where it is typically 50-100 times less abundant. We report development and multi-center validation of a novel fully automated digital immunoassay for NfL in serum for informing axonal injury status. METHODS: A 45-min immunoassay for serum NfL was developed for use on an automated digital analyzer based on Simoa technology. The analytical performance (sensitivity, precision, reproducibility, linearity, sample type) was characterized and then cross validated across 17 laboratories in 10 countries. Analytical performance for clinical NfL measurement was examined in individual patients with relapsing remitting multiple sclerosis (RRMS) after 3 months of disease modifying treatment (DMT) with fingolimod. RESULTS: The assay exhibited a lower limit of detection (LLoD) of 0.05 ng/L, a lower limit of quantification (LLoQ) of 0.8 ng/L, and between-laboratory imprecision <10 % across 17 validation sites. All tested samples had measurable NfL concentrations well above the LLoQ. In matched pre-post treatment samples, decreases in NfL were observed in 26/29 RRMS patients three months after DMT start, with significant decreases detected in a majority of patients. CONCLUSIONS: The sensitivity characteristics and reproducible performance across laboratories combined with full automation make this assay suitable for clinical use for NfL assessment, monitoring in individual patients, and cross-comparisons of results across multiple sites.


Asunto(s)
Filamentos Intermedios , Neuronas , Humanos , Reproducibilidad de los Resultados , Inmunoensayo , Proteínas de Neurofilamentos , Biomarcadores , Pruebas Hematológicas
3.
N Engl J Med ; 383(6): 546-557, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32757523

RESUMEN

BACKGROUND: Ofatumumab, a subcutaneous anti-CD20 monoclonal antibody, selectively depletes B cells. Teriflunomide, an oral inhibitor of pyrimidine synthesis, reduces T-cell and B-cell activation. The relative effects of these two drugs in patients with multiple sclerosis are not known. METHODS: In two double-blind, double-dummy, phase 3 trials, we randomly assigned patients with relapsing multiple sclerosis to receive subcutaneous ofatumumab (20 mg every 4 weeks after 20-mg loading doses at days 1, 7, and 14) or oral teriflunomide (14 mg daily) for up to 30 months. The primary end point was the annualized relapse rate. Secondary end points included disability worsening confirmed at 3 months or 6 months, disability improvement confirmed at 6 months, the number of gadolinium-enhancing lesions per T1-weighted magnetic resonance imaging (MRI) scan, the annualized rate of new or enlarging lesions on T2-weighted MRI, serum neurofilament light chain levels at month 3, and change in brain volume. RESULTS: Overall, 946 patients were assigned to receive ofatumumab and 936 to receive teriflunomide; the median follow-up was 1.6 years. The annualized relapse rates in the ofatumumab and teriflunomide groups were 0.11 and 0.22, respectively, in trial 1 (difference, -0.11; 95% confidence interval [CI], -0.16 to -0.06; P<0.001) and 0.10 and 0.25 in trial 2 (difference, -0.15; 95% CI, -0.20 to -0.09; P<0.001). In the pooled trials, the percentage of patients with disability worsening confirmed at 3 months was 10.9% with ofatumumab and 15.0% with teriflunomide (hazard ratio, 0.66; P = 0.002); the percentage with disability worsening confirmed at 6 months was 8.1% and 12.0%, respectively (hazard ratio, 0.68; P = 0.01); and the percentage with disability improvement confirmed at 6 months was 11.0% and 8.1% (hazard ratio, 1.35; P = 0.09). The number of gadolinium-enhancing lesions per T1-weighted MRI scan, the annualized rate of lesions on T2-weighted MRI, and serum neurofilament light chain levels, but not the change in brain volume, were in the same direction as the primary end point. Injection-related reactions occurred in 20.2% in the ofatumumab group and in 15.0% in the teriflunomide group (placebo injections). Serious infections occurred in 2.5% and 1.8% of the patients in the respective groups. CONCLUSIONS: Among patients with multiple sclerosis, ofatumumab was associated with lower annualized relapse rates than teriflunomide. (Funded by Novartis; ASCLEPIOS I and II ClinicalTrials.gov numbers, NCT02792218 and NCT02792231.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Crotonatos/uso terapéutico , Inyecciones Subcutáneas/efectos adversos , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Toluidinas/uso terapéutico , Adulto , Anticuerpos Monoclonales Humanizados/efectos adversos , Linfocitos B , Encéfalo/patología , Crotonatos/efectos adversos , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Hidroxibutiratos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Masculino , Esclerosis Múltiple Recurrente-Remitente/patología , Nitrilos , Linfocitos T , Toluidinas/efectos adversos
4.
Ann Neurol ; 92(3): 486-502, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713309

RESUMEN

OBJECTIVES: Neuropathological studies have shown that multiple sclerosis (MS) lesions are heterogeneous in terms of myelin/axon damage and repair as well as iron content. However, it remains a challenge to identify specific chronic lesion types, especially remyelinated lesions, in vivo in patients with MS. METHODS: We performed 3 studies: (1) a cross-sectional study in a prospective cohort of 115 patients with MS and 76 healthy controls, who underwent 3 T magnetic resonance imaging (MRI) for quantitative susceptibility mapping (QSM), myelin water fraction (MWF), and neurite density index (NDI) maps. White matter (WM) lesions in QSM were classified into 5 QSM lesion types (iso-intense, hypo-intense, hyperintense, lesions with hypo-intense rims, and lesions with paramagnetic rim legions [PRLs]); (2) a longitudinal study of 40 patients with MS to study the evolution of lesions over 2 years; (3) a postmortem histopathology-QSM validation study in 3 brains of patients with MS to assess the accuracy of QSM classification to identify neuropathological lesion types in 63 WM lesions. RESULTS: At baseline, hypo- and isointense lesions showed higher mean MWF and NDI values compared to other QSM lesion types (p < 0.0001). Further, at 2-year follow-up, hypo-/iso-intense lesions showed an increase in MWF. Postmortem analyses revealed that QSM highly accurately identifies (1) fully remyelinated areas as hypo-/iso-intense (sensitivity = 88.89% and specificity = 100%), (2) chronic inactive lesions as hyperintense (sensitivity = 71.43% and specificity = 92.00%), and (3) chronic active/smoldering lesions as PRLs (sensitivity = 92.86% and specificity = 86.36%). INTERPRETATION: These results provide the first evidence that it is possible to distinguish chronic MS lesions in a clinical setting, hereby supporting with new biomarkers to develop and assess remyelinating treatments. ANN NEUROL 2022;92:486-502.


Asunto(s)
Esclerosis Múltiple , Biomarcadores , Encéfalo/patología , Estudios Transversales , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Estudios Prospectivos , Agua
5.
Ann Neurol ; 91(6): 814-820, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35293622

RESUMEN

OBJECTIVE: Intrathecal Immunoglobulin M synthesis (IgMIntrathecal Fraction (IF) + ) and spinal MRI lesions are both strong independent predictors of higher disease activity and severity in multiple sclerosis (MS). We investigated whether IgMIF + is associated with spinal cord manifestation and higher neuroaxonal damage in early MS. METHODS: In 122 patients with a first demyelinating event associations between (1) spinal versus (vs) non-spinal clinical syndrome (2) spinal vs cerebral T2-weighted (T2w) and (3) contrast-enhancing (CE) lesion counts with IgGIF + (vs IgGIF - ) or IgMIF + (vs IgMIF - ) were investigated by logistic regression adjusted for age and sex, respectively. For serum neurofilament light chain (sNfL) analysis patients were categorized for presence or absence of oligoclonal IgG bands (OCGB), IgGIF and IgMIF (>0% vs 0%, respectively): (1) OCGB- /IgGIF - /IgMIF - ; (2) OCGB+ /IgGIF - /IgMIF - ; (3) OCGB+ /IgGIF + /IgMIF - ; and (4) OCGB+ /IgGIF + /IgMIF + . Associations between categories 2 to 4 vs category 1 with sNfL concentrations were analyzed by robust linear regression, adjusted for sex and MRI parameters. RESULTS: Patients with a spinal syndrome had a 8.36-fold higher odds of IgMIF + (95%CI 3.03-23.03; p < 0.01). Each spinal T2w lesion (odds Ratio 1.39; 1.02-1.90; p = 0.037) and CE lesion (OR 2.73; 1.22-6.09; p = 0.014) was associated with an increased risk of IgMIF + (but not of IgGIF + ); this was not the case for cerebral lesions. OCGB+ /IgGIF + /IgMIF + category patients showed highest sNfL levels (estimate:1.80; 0.55-3.06; p < 0.01). INTERPRETATION: Intrathecal IgM synthesis is strongly associated with spinal manifestation and independently more pronounced neuroaxonal injury in early MS, suggesting a distinct clinical phenotype and pathophysiology. ANN NEUROL 2022;91:814-820.


Asunto(s)
Esclerosis Múltiple , Bandas Oligoclonales , Humanos , Inmunoglobulina G , Inmunoglobulina M , Esclerosis Múltiple/patología , Médula Espinal/diagnóstico por imagen , Médula Espinal/patología
6.
J Neurol Neurosurg Psychiatry ; 94(9): 698-706, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37130728

RESUMEN

BACKGROUND: Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS: Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS: 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS: Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.


Asunto(s)
Esclerosis Múltiple , Humanos , Biomarcadores , Encéfalo/patología , Filamentos Intermedios/metabolismo , Microglía/metabolismo , Esclerosis Múltiple/metabolismo , Proteínas de Neurofilamentos , Tomografía de Emisión de Positrones , Receptores de GABA/metabolismo
7.
J Neurol Neurosurg Psychiatry ; 94(9): 726-737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37076291

RESUMEN

BACKGROUND: Granulocyte invasion into the brain is a pathoanatomical feature differentiating neuromyelitis optica spectrum disorder (NMOSD) from multiple sclerosis (MS). We aimed to determine whether granulocyte activation markers (GAM) in cerebrospinal fluid (CSF) can be used as a biomarker to distinguish NMOSD from MS, and whether levels associate with neurological impairment. METHODS: We quantified CSF levels of five GAM (neutrophil elastase, myeloperoxidase, neutrophil gelatinase-associated lipocalin, matrixmetalloproteinase-8, tissue inhibitor of metalloproteinase-1), as well as a set of inflammatory and tissue-destruction markers, known to be upregulated in NMOSD and MS (neurofilament light chain, glial fibrillary acidic protein, S100B, matrix metalloproteinase-9, intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), in two cohorts of patients with mixed NMOSD and relapsing-remitting multiple sclerosis (RRMS). RESULTS: In acute NMOSD, GAM and adhesion molecules, but not the other markers, were higher than in RRMS and correlated with actual clinical disability scores. Peak GAM levels occurred at the onset of NMOSD attacks, while they were stably low in MS, allowing to differentiate the two diseases for ≤21 days from onset of clinical exacerbation. Composites of GAM provided area under the curve values of 0.90-0.98 (specificity of 0.76-1.0, sensitivity of 0.87-1.0) to differentiate NMOSD from MS, including all anti-aquaporin-4 protein (aAQP4)-antibody-negative patients who were untreated. CONCLUSIONS: GAM composites represent a novel biomarker to reliably differentiate NMOSD from MS, including in aAQP4- NMOSD. The association of GAM with the degree of concurrent neurological impairment provides evidence for their pathogenic role, in turn suggesting them as potential drug targets in acute NMOSD.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Esclerosis Múltiple/diagnóstico , Inhibidor Tisular de Metaloproteinasa-1 , Neuromielitis Óptica/patología , Acuaporina 4 , Inflamación , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
8.
J Magn Reson Imaging ; 58(3): 864-876, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36708267

RESUMEN

BACKGROUND: Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE: To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE: Retrospective, longitudinal. SUBJECTS: A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE: Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT: The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS: The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION: In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Masculino , Humanos , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios de Cohortes , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Eur J Neurol ; 30(5): 1389-1399, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779855

RESUMEN

BACKGROUND AND PURPOSE: Serum neurofilament light chain (sNfL) is a promising biomarker of neuroaxonal damage in persons with multiple sclerosis (pwMS). In cross-sectional studies, sNfL has been associated with disease activity and brain magnetic resonance imaging (MRI) changes; however, it is still unclear to what extent in particular high sNfL levels impact on subsequent disease evolution. METHODS: sNfL was quantified by an ultrasensitive single molecule array (Simoa) in 199 pwMS (median age = 34.2 years, 64.3% female) and 49 controls. All pwMS underwent 3-T MRI to assess global and compartmental normalized brain volumes, T2-lesion load, and cortical mean thickness. Follow-up data and serum samples were available in 144 pwMS (median follow-up time = 3.8 years). Linear and binary logistic models were used to estimate the independent contribution of sNfL for changes in MRI and Expanded Disability Status Scale (EDSS). Age-corrected sNfL z-scores from a normative database of healthy controls were used for sensitivity analyses. RESULTS: High sNfL levels at baseline were associated with atrophy measures of the whole brain (standardized beta coefficient ßj = -0.352, p < 0.001), white matter (ßj = -0.229, p = 0.007), thalamus (ßj = -0.372, p = 0.004), and putamen (ßj = -1.687, p = 0.012). pwMS with high levels of sNfL at baseline and follow-up had a greater risk of EDSS worsening (p = 0.007). CONCLUSIONS: Already single time point elevation of sNfL has a distinct effect on brain volume changes over a short-term period, and repeated high levels of sNfL indicate accumulating physical disability. Serial assessment of sNfL may provide added value in the clinical management of pwMS.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Humanos , Femenino , Adulto , Masculino , Esclerosis Múltiple/patología , Estudios Transversales , Filamentos Intermedios , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Biomarcadores , Proteínas de Neurofilamentos , Atrofia/patología , Enfermedades Neurodegenerativas/patología
10.
Biomarkers ; 28(3): 341-351, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36714921

RESUMEN

Background: Functionally relevant coronary artery disease (fCAD), causing symptoms of myocardial ischemia, can currently only be reliably detected with advanced cardiac imaging. Serum neurofilament light chain (sNfL) is a biomarker for neuro-axonal injury known to be elevated by cardiovascular (CV) risk factors and cerebrovascular small-vessel diseases. Due to their pathophysiological similarities with fCAD and the link to CV risk factors, we hypothesised that sNfL may have diagnostic and prognostic value for fCAD and adverse cardiovascular outcomes.Methods: Of the large prospective Basel VIII study (NCT01838148), 4'016 consecutive patients undergoing cardiac work-up for suspected fCAD were included (median age 68 years, 32.5% women, 46.9% with history of CAD). The presence of fCAD was adjudicated using myocardial perfusion imaging single-photon emission tomography (MPI-SPECT) and coronary angiography. sNfL was measured using a high-sensitive single-molecule array assay. All-cause and cardiovascular death, myocardial infarction (MI), and stroke/transient ischaemic attack (TIA) during 5-year follow-up were the prognostic endpoints.Results: The diagnostic accuracy of sNfL for fCAD as quantified by the area under the curve (AUC) was low (0.58, 95%CI 0.56-0.60). sNfL was strongly associated with age, renal dysfunction, and body mass index and was a strong and independent predictor of all-cause death, cardiovascular death, and stroke/TIA but not MI. Time-dependent AUC for cardiovascular-death at 1-year was 0.85, 95%CI 0.80-0.89, and 0.81, 95%CI 0.77-0.86 at 2-years.Conclusion: While sNfL concentrations did not show a diagnostic role for fCAD, in contrast, sNfL was a strong and independent predictor of cardiovascular outcomes, including all-cause death, cardiovascular death and stroke/TIA.


Asunto(s)
Enfermedad de la Arteria Coronaria , Ataque Isquémico Transitorio , Infarto del Miocardio , Accidente Cerebrovascular , Humanos , Femenino , Anciano , Masculino , Estudios Prospectivos , Filamentos Intermedios , Pronóstico , Accidente Cerebrovascular/diagnóstico
11.
J Neuroinflammation ; 19(1): 252, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210459

RESUMEN

BACKGROUND: Despite widespread searches, there are currently no validated biofluid markers for the detection of subclinical neuroinflammation in multiple sclerosis (MS). The dynamic nature of human metabolism in response to changes in homeostasis, as measured by metabolomics, may allow early identification of clinically silent neuroinflammation. Using the delayed-type hypersensitivity (DTH) MS rat model, we investigated the serum and cerebrospinal fluid (CSF) metabolomics profiles and neurofilament-light chain (NfL) levels, as a putative marker of neuroaxonal damage, arising from focal, clinically silent neuroinflammatory brain lesions and their discriminatory abilities to distinguish DTH animals from controls. METHODS: 1H nuclear magnetic resonance (NMR) spectroscopy metabolomics and NfL measurements were performed on serum and CSF at days 12, 28 and 60 after DTH lesion initiation. Supervised multivariate analyses were used to determine metabolomics differences between DTH animals and controls. Immunohistochemistry was used to assess the extent of neuroinflammation and tissue damage. RESULTS: Serum and CSF metabolomics perturbations were detectable in DTH animals (vs. controls) at all time points, with the greatest change occurring at the earliest time point (day 12) when the neuroinflammatory response was most intense (mean predictive accuracy [SD]-serum: 80.6 [10.7]%, p < 0.0001; CSF: 69.3 [13.5]%, p < 0.0001). The top discriminatory metabolites at day 12 (serum: allantoin, cytidine; CSF: glutamine, glucose) were all reduced in DTH animals compared to controls, and correlated with histological markers of neuroinflammation, particularly astrogliosis (Pearson coefficient, r-allantoin: r = - 0.562, p = 0.004; glutamine: r = - 0.528, p = 0.008). Serum and CSF NfL levels did not distinguish DTH animals from controls at day 12, rather, significant differences were observed at day 28 (mean [SEM]-serum: 38.5 [4.8] vs. 17.4 [2.6] pg/mL, p = 0.002; CSF: 1312.0 [379.1] vs. 475.8 [74.7] pg/mL, p = 0.027). Neither serum nor CSF NfL levels correlated with markers of neuroinflammation; serum NfL did, however, correlate strongly with axonal loss (r = 0.641, p = 0.001), but CSF NfL did not (p = 0.137). CONCLUSIONS: While NfL levels were elevated later in the pathogenesis of the DTH lesion, serum and CSF metabolomics were able to detect early, clinically silent neuroinflammation and are likely to present sensitive biomarkers for the assessment of subclinical disease activity in patients.


Asunto(s)
Esclerosis Múltiple , Alantoína , Animales , Biomarcadores , Citidina , Modelos Animales de Enfermedad , Glucosa , Glutamina , Humanos , Filamentos Intermedios , Esclerosis Múltiple/líquido cefalorraquídeo , Proteínas de Neurofilamentos , Ratas
12.
Ann Neurol ; 89(3): 610-616, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33377539

RESUMEN

There is emerging evidence for multifarious neurological manifestations of coronavirus disease 2019 (COVID-19), but little is known regarding whether they reflect structural damage to the nervous system. Serum neurofilament light chain (sNfL) is a specific biomarker of neuronal injury. We measured sNfL concentrations of 29 critically ill COVID-19 patients, 10 critically ill non-COVID-19 patients, and 259 healthy controls. After adjusting for neurological comorbidities and age, sNfL concentrations were higher in patients with COVID-19 versus both comparator groups. Higher sNfL levels were associated with unfavorable short-term outcome, indicating that neuronal injury is common and pronounced in critically ill patients. ANN NEUROL 2021;89:610-616.


Asunto(s)
COVID-19/sangre , Proteínas de Neurofilamentos/sangre , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/fisiopatología , COVID-19/terapia , Estudios de Casos y Controles , Enfermedad Crítica , Femenino , Escala de Consecuencias de Glasgow , Mortalidad Hospitalaria , Humanos , Hiponatremia/sangre , Hiponatremia/terapia , Unidades de Cuidados Intensivos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Puntuaciones en la Disfunción de Órganos , Edema Pulmonar/sangre , Edema Pulmonar/terapia , Respiración Artificial/estadística & datos numéricos , Insuficiencia Respiratoria/sangre , Insuficiencia Respiratoria/terapia , Infecciones del Sistema Respiratorio/sangre , Infecciones del Sistema Respiratorio/terapia , SARS-CoV-2 , Choque Cardiogénico/sangre , Choque Cardiogénico/terapia
13.
Ann Neurol ; 90(3): 477-489, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34057235

RESUMEN

OBJECTIVE: We aimed to determine in relapsing multiple sclerosis (MS) whether intrathecal synthesis of immunoglobulin (Ig) M and IgG is associated with outcomes reflecting inflammatory activity and chronic worsening. METHODS: We compared cerebrospinal fluid analysis, clinical and magnetic resonance imaging data, and serum neurofilament light chain (sNfL) levels at baseline and follow-up in 530 patients with relapsing MS. Patients were categorized by the presence of oligoclonal IgG bands (OCGB) and intrathecal synthesis of IgG and IgM (intrathecal fraction [IF]: IgGIF and IgMIF ). Relationships with the time to first relapse, sNfL concentrations, T2-weighted (T2w) lesions, MS Severity Score (MSSS), and time to initiation of high-efficacy therapy were analyzed in covariate-adjusted statistical models. RESULTS: By categorical analysis, in patients with IgMIF the median time to first relapse was 28 months shorter and MSSS on average higher by 1.11 steps compared with patients without intrathecal immunoglobulin synthesis. Moreover, patients with IgMIF had higher sNfL concentrations, more new/enlarging T2w lesions, and higher total T2w lesion counts (all p ≤ 0.01). These associations were absent or equally smaller in patients who were positive for only OCGB or OCGB/IgGIF . Furthermore, quantitative analyses revealed that in patients with IgMIF ≥ median, the time to first relapse and to initiation of high-efficacy therapy was shorter by 32 and by 203 months, respectively (both p < 0.01), in comparison to patients with IgMIF < median. Dose-dependent associations were also found for IgMIF but not for IgGIF with magnetic resonance imaging-defined disease activity and sNfL. INTERPRETATION: This large study supports the value of intrathecal IgM synthesis as an independent biomarker of disease activity and severity in relapsing MS. ANN NEUROL 2021;90:477-489.


Asunto(s)
Progresión de la Enfermedad , Inmunoglobulina M/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Inmunoglobulina M/biosíntesis , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Punción Espinal/tendencias , Adulto Joven
14.
Mult Scler ; 28(13): 2081-2089, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35848622

RESUMEN

BACKGROUND: In the trial of Minocycline in Clinically Isolated Syndrome (MinoCIS), minocycline significantly reduced the risk of conversion to clinically definite multiple sclerosis (CDMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in MS, and minocycline modulates matrix metalloproteinases (MMPs). OBJECTIVE: To assess the value of blood NfL and GFAP as a biomarker of baseline and future disease activity and its utility to monitor treatment response in minocycline-treated patients with clinically isolated syndrome (CIS). METHODS: We measured NfL, GFAP, and MMPs in blood samples from 96 patients with CIS from the MinoCIS study and compared biomarkers with clinical and radiologic characteristics and outcome. RESULTS: At baseline, NfL levels correlated with T2 lesion load and number of gadolinium-enhancing lesions. Baseline NfL levels predicted conversion into CDMS at month 6. GFAP levels at baseline were correlated with T2 lesion volume. Minocycline treatment significantly increased NfL levels at 3 months but not at 6 months, and decreased GFAP levels at month 6. Minocycline decreased MMP-7 concentrations at month 1. DISCUSSION: Blood NfL levels are associated with measures of disease activity in CIS and have prognostic value. Minocycline increased NfL levels at month 3, but reduced GFAP and MMP-7 levels.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Biomarcadores , Enfermedades Desmielinizantes/tratamiento farmacológico , Gadolinio , Proteína Ácida Fibrilar de la Glía , Humanos , Filamentos Intermedios , Metaloproteinasa 7 de la Matriz , Minociclina/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Proteínas de Neurofilamentos
15.
Mult Scler ; 28(3): 429-440, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34240656

RESUMEN

BACKGROUND: The envelope protein of human endogenous retrovirus W (HERV-W-Env) is expressed by macrophages and microglia, mediating axonal damage in chronic active MS lesions. OBJECTIVE AND METHODS: This phase 2, double-blind, 48-week trial in relapsing-remitting MS with 48-week extension phase assessed the efficacy and safety of temelimab; a monoclonal antibody neutralizing HERV-W-Env. The primary endpoint was the reduction of cumulative gadolinium-enhancing T1-lesions in brain magnetic resonance imaging (MRI) scans at week 24. Additional endpoints included numbers of T2 and T1-hypointense lesions, magnetization transfer ratio, and brain atrophy. In total, 270 participants were randomized to receive monthly intravenous temelimab (6, 12, or 18 mg/kg) or placebo for 24 weeks; at week 24 placebo-treated participants were re-randomized to treatment groups. RESULTS: The primary endpoint was not met. At week 48, participants treated with 18 mg/kg temelimab had fewer new T1-hypointense lesions (p = 0.014) and showed consistent, however statistically non-significant, reductions in brain atrophy and magnetization transfer ratio decrease, as compared with the placebo/comparator group. These latter two trends were sustained over 96 weeks. No safety issues emerged. CONCLUSION: Temelimab failed to show an effect on features of acute inflammation but demonstrated preliminary radiological signs of possible anti-neurodegenerative effects. Current data support the development of temelimab for progressive MS. TRIAL REGISTRATION: CHANGE-MS: ClinicalTrials.gov: NCT02782858, EudraCT: 2015-004059-29; ANGEL-MS: ClinicalTrials.gov: NCT03239860, EudraCT: 2016-004935-18.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Método Doble Ciego , Productos del Gen env/uso terapéutico , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/patología , Resultado del Tratamiento
16.
Mult Scler ; 28(4): 573-582, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34378446

RESUMEN

BACKGROUND: Alemtuzumab efficacy and safety was demonstrated in CARE-MS I and extension studies (CAMMS03409; TOPAZ). OBJECTIVE: Evaluate serum neurofilament light chain (sNfL) in CARE-MS I patients and highly active disease (HAD) subgroup, over 7 and 2 years for alemtuzumab and subcutaneous interferon beta-1a (SC IFNB-1a), respectively. METHODS: Patients received SC IFNB-1a 44 µg 3×/week or alemtuzumab 12 mg/day at baseline and month 12, with further as-needed 3-day courses. sNfL was measured using single-molecule array (Simoa™). HAD definition was ⩾2 relapses in year before randomization and ⩾1 baseline gadolinium-enhancing lesion. RESULTS: Baseline median sNfL levels were similar in alemtuzumab (n = 354) and SC IFNB-1a-treated (n = 159) patients (31.7 vs 31.4 pg/mL), but decreased with alemtuzumab versus SC IFNB-1a until year 2 (Y2; 13.2 vs 18.7 pg/mL; p < 0.0001); 12.7 pg/mL for alemtuzumab at Y7. Alemtuzumab-treated patients had sNfL at/below healthy control median at Y2 (72% vs 47%; p < 0.0001); 73% for alemtuzumab at Y7. HAD patients (n = 102) had higher baseline sNfL (49.4 pg/mL) versus overall population; alemtuzumab HAD patients attained similar levels (Y2, 12.8 pg/mL; Y7, 12.7 pg/mL; 75% were at/below control median at Y7). CONCLUSION: Alemtuzumab was superior to SC IFNB-1a in reducing sNfL, with levels in alemtuzumab patients remaining stable through Y7. CLINICALTRIALS.GOV IDENTIFIER: NCT00530348, NCT00930553, NCT02255656.


Asunto(s)
Filamentos Intermedios , Esclerosis Múltiple Recurrente-Remitente , Alemtuzumab/efectos adversos , Humanos , Interferón beta-1a/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Proteínas de Neurofilamentos
17.
BMC Med ; 19(1): 38, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33583409

RESUMEN

BACKGROUND: Neurofilament light chain (NfL) is a cytoskeletal protein component whose release into blood is indicative of neuronal damage. Tau is a microtubule-associated protein in neurons and strongly associated with overall brain degeneration. NfL and tau levels are associated with mortality in different neurological diseases, but studies in the general population are missing. We investigated whether NfL and tau serum levels could serve as prognostic markers for overall mortality in elderly individuals without pre-defined neurological conditions. Further, we investigated the cross-sectional associations between NfL, tau, neuropsychological functioning, and brain structures. METHODS: In 1997, 385 inhabitants of Augsburg who were aged 65 years and older were included in the Memory and Morbidity in Augsburg Elderly (MEMO) study. They participated in a face-to-face medical interview including neuropsychological tests and magnetic resonance imaging (MRI) of the brain. NfL and tau were measured from non-fasting blood samples using highly sensitive single molecule array assays. To assess the prognostic accuracy of the biomarkers, concordance statistics based on the predicted 5-year survival probabilities were calculated for different Cox regression models. Associations between the biomarkers and the neuropsychological test scores or brain structures were investigated using linear or logistic regression. RESULTS: NfL (HR 1.27, 95% CI [1.14-1.42]) and tau (1.20 [1.07-1.35]) serum levels were independently associated with all-cause mortality. NfL, but not tau, increased the prognostic accuracy when added to a model containing sociodemographic characteristics (concordance statistic 0.684 [0.612-0.755] vs. 0.663 [0.593-0.733]), but not when added to a model containing sociodemographic characteristics and brain atrophy or neuropsychological test scores. NfL serum levels were cross-sectionally associated with neuropsychological test scores and brain structures. CONCLUSIONS: The association between NfL serum levels and brain atrophy and neuropsychological performance in individuals without overt neurological disease is similar to that seen in patients with neurodegenerative diseases. These findings support the concept of a continuum of physiological aging and incipient, subclinical pathology, and manifest disease. NfL, but not tau, serum levels might serve as a prognostic marker for all-cause mortality if no other clinical information is available.


Asunto(s)
Envejecimiento/patología , Filamentos Intermedios/patología , Enfermedades Neurodegenerativas/patología , Proteínas de Neurofilamentos/sangre , Proteínas tau/sangre , Anciano , Biomarcadores/sangre , Encéfalo , Estudios Transversales , Alemania , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/mortalidad , Pruebas Neuropsicológicas , Pronóstico
18.
J Neuroinflammation ; 18(1): 105, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933106

RESUMEN

BACKGROUND: Neuromyelitis optica spectrum disorder (NMOSD) is a frequently disabling neuroinflammatory syndrome with a relapsing course. Blood-based disease severity and prognostic biomarkers for NMOSD are a yet unmet clinical need. Here, we evaluated serum glial fibrillary acidic protein (sGFAP) and neurofilament light (sNfL) as disease severity and prognostic biomarkers in patients with aquaporin-4 immunoglobulin (Ig)G positive (AQP4-IgG+) NMOSD. METHODS: sGFAP and sNfL were determined by single-molecule array technology in a prospective cohort of 33 AQP4-IgG+ patients with NMOSD, 32 of which were in clinical remission at study baseline. Sixteen myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) patients and 38 healthy persons were included as controls. Attacks were recorded in all AQP4-IgG+ patients over a median observation period of 4.25 years. RESULTS: In patients with AQP4-IgG+ NMOSD, median sGFAP (109.2 pg/ml) was non-significantly higher than in MOG-IgG+ patients (81.1 pg/ml; p = 0.83) and healthy controls (67.7 pg/ml; p = 0.07); sNfL did not substantially differ between groups. Yet, in AQP4-IgG+, but not MOG-IgG+ patients, higher sGFAP was associated with worse clinical disability scores, including the Expanded Disability Status Scale (EDSS, standardized effect size = 1.30, p = 0.007) and Multiple Sclerosis Functional Composite (MSFC, standardized effect size = - 1.28, p = 0.01). While in AQP4-IgG+, but not MOG-IgG+ patients, baseline sGFAP and sNfL were positively associated (standardized effect size = 2.24, p = 0.001), higher sNfL was only non-significantly associated with worse EDSS (standardized effect size = 1.09, p = 0.15) and MSFC (standardized effect size = - 1.75, p = 0.06) in patients with AQP4-IgG+ NMOSD. Patients with AQP4-IgG+ NMOSD with sGFAP > 90 pg/ml at baseline had a shorter time to a future attack than those with sGFAP ≤ 90 pg/ml (adjusted hazard ratio [95% confidence interval] = 11.6 [1.3-105.6], p = 0.03). In contrast, baseline sNfL levels above the 75th age adjusted percentile were not associated with a shorter time to a future attack in patients with AQP4-IgG+ NMOSD. CONCLUSION: These findings suggest a potential role for sGFAP as biomarker for disease severity and future disease activity in patients with AQP4-IgG+ NMOSD in phases of clinical remission.


Asunto(s)
Biomarcadores/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Proteínas de Neurofilamentos/sangre , Neuromielitis Óptica/sangre , Adulto , Anciano , Autoanticuerpos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Índice de Severidad de la Enfermedad
19.
Mult Scler ; 27(14): 2219-2231, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33769117

RESUMEN

BACKGROUND: Disease-modifying therapies (DMTs) can reduce the risk of disability worsening in patients with relapsing forms of multiple sclerosis (RMS). High-efficacy DMTs can lead to confirmed or sustained disability improvement (CDI and SDI). OBJECTIVE AND METHODS: Post hoc analyses of data from the TRANSFORMS, FREEDOMS, and FREEDOMS II trials and their extensions assessed the effects of fingolimod (0.5-1.25 mg/day) on stabilizing or improving disability over ⩽8 years in participants with RMS. CDI and SDI rates were compared between participants initially randomized to fingolimod, interferon (IFNß-1a), or placebo. RESULTS: At 8 years' follow-up in TRANSFORMS, 35.1% (95% confidence interval [CI], 28.2%-43.1%) of assessed participants in the IFNß-1a-fingolimod switch group and 41.9% (36.6%-47.6%) on continuous fingolimod experienced CDI; disability did not worsen in approximately 70%. Similar results were seen in the combined FREEDOMS population. Proportionally fewer TRANSFORMS participants achieved SDI in the IFNß-1a-fingolimod switch group than on continuous fingolimod (5.4% [3.0%-9.5%] vs 14.2% [10.8%-18.4%], p = 0.01). CONCLUSION: CDI and SDI are outcomes of interest for clinical trials and for long-term follow-up of participants with RMS. Monitoring CDI and SDI in addition to disability worsening may facilitate understanding of the therapeutic benefit of RMS treatments.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Inmunosupresores/uso terapéutico , Interferón beta/uso terapéutico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico
20.
Mult Scler ; 27(13): 2001-2013, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34612753

RESUMEN

BACKGROUND: The added value of neurofilament light chain levels in serum (sNfL) to the concept of no evidence of disease activity-3 (NEDA-3) has not yet been investigated in detail. OBJECTIVE: To assess whether combination of sNfL with NEDA-3 status improves identification of patients at higher risk of disease activity during the following year. METHODS: We analyzed 369 blood samples from 155 early relapsing-remitting MS patients on interferon beta-1a. We compared disease activity, including the rate of brain volume loss in subgroups defined by NEDA-3 status and high or low sNfL (> 90th or < 90th percentile). RESULTS: In patients with disease activity (EDA-3), those with higher sNFL had higher odds of EDA-3 in the following year than those with low sNFL (86.5% vs 57.9%; OR = 4.25, 95% CI: [2.02, 8.95]; p = 0.0001) and greater whole brain volume loss during the following year (ß = -0.36%; 95% CI = [-0.60, -0.13]; p = 0.002). Accordingly, NEDA-3 patients with high sNfL showed numerically higher disease activity (EDA-3) in the following year compared with those with low sNfL (57.1% vs 31.1%). CONCLUSION: sNfL improves the ability to identify patients at higher risk of future disease activity, beyond their NEDA-3 status. Measurement of sNfL may assist clinicians in decision-making by providing more sensitive prognostic information.


Asunto(s)
Esclerosis Múltiple , Encéfalo/diagnóstico por imagen , Humanos , Filamentos Intermedios , Esclerosis Múltiple/tratamiento farmacológico , Proteínas de Neurofilamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA