Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Radiology ; 299(3): 662-672, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33754827

RESUMEN

Background Abnormal findings at brain MRI in patients with neurologic Wilson disease (WD) are characterized by signal intensity changes and cerebral atrophy. T2 signal hypointensities and atrophy are largely irreversible with treatment; their relationship with permanent disability has not been systematically investigated. Purpose To investigate associations of regional brain atrophy and iron accumulation at MRI with clinical severity in participants with neurologic WD who are undergoing long-term anti-copper treatment. Materials and Methods Participants with WD and controls were compared in a prospective study performed from 2015 to 2019. MRI at 3.0 T included three-dimensional T1-weighted and six-echo multigradient-echo pulse sequences for morphometry and quantitative susceptibility mapping, respectively. Neurologic severity was assessed with the Unified WD Rating Scale (UWDRS). Automated multi-atlas segmentation pipeline with dual contrast (susceptibility and T1) was used for the calculation of volumes and mean susceptibilities in deep gray matter nuclei. Additionally, whole-brain analysis using deformation and surface-based morphometry was performed. Least absolute shrinkage and selection operator regression was used to assess the association of regional volumes and susceptibilities with the UWDRS score. Results Twenty-nine participants with WD (mean age, 47 years ± 9 [standard deviation]; 15 women) and 26 controls (mean age, 45 years ± 12; 14 women) were evaluated. Whole-brain analysis demonstrated atrophy of the deep gray matter nuclei, brainstem, internal capsule, motor cortex and corticospinal pathway, and visual cortex and optic radiation in participants with WD (P < .05 at voxel level, corrected for family-wise error). The UWDRS score was negatively correlated with volumes of putamen (r = -0.63, P < .001), red nucleus (r = -0.58, P = .001), globus pallidus (r = -0.53, P = .003), and substantia nigra (r = -0.50, P = .006) but not with susceptibilities. Only the putaminal volume was identified as a stable factor associated with the UWDRS score (R2 = 0.38, P < .001) using least absolute shrinkage and selection operator regression. Conclusion Individuals with Wilson disease (WD) had widespread brain atrophy most pronounced in the central structures. The putaminal volume was associated with the Unified WD Rating Scale score and can be used as a surrogate imaging marker of clinical severity. © RSNA, 2021 Supplemental material is available for this article. See also the editorial by Du and Bydder in this issue.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Degeneración Hepatolenticular/diagnóstico por imagen , Degeneración Hepatolenticular/metabolismo , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Atrofia , Encéfalo/patología , Estudios de Casos y Controles , Femenino , Degeneración Hepatolenticular/tratamiento farmacológico , Degeneración Hepatolenticular/patología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Índice de Severidad de la Enfermedad
2.
J Magn Reson Imaging ; 51(6): 1829-1835, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31710776

RESUMEN

BACKGROUND: In Wilson's disease (WD), demyelination, rarefaction, gliosis, and iron accumulation in the deep gray matter cause opposing effects on T2 -weighted MR signal. However, the degree and interplay of these changes in chronically treated WD patients has not been quantitatively studied. PURPOSE: To compare differences in brain multiparametric mapping between controls and chronically treated WD patients with neurological (neuro-WD) and hepatic (hep-WD) forms to infer the nature of residual WD neuropathology. STUDY TYPE: Cross-sectional. POPULATION/SUBJECTS: Thirty-eight WD patients (28 neuro-WD, 10 hep-WD); 26 healthy controls. FIELD STRENGTH/SEQUENCE: 3.0T: susceptibility, T2 *, T2 , T1 relaxometry; 1.5T: T2 , T1 relaxometry. ASSESSMENT: The following 3D regions of interest (ROIs) were manually segmented: globus pallidus, putamen, caudate nucleus, and thalamus. Mean bulk magnetic susceptibility, T2 *, T2 , and T1 relaxation times were calculated for each ROI. STATISTICAL TESTS: The effect of group (neuro-WD, hep-WD, controls) and age was assessed using a generalized least squares model with different variance for each ROI and quantitative parameter. A general linear hypothesis test with Tukey adjustment was used for post-hoc between-group analysis; P < 0.05 was considered significant. RESULTS: Susceptibility values were higher in all ROIs in neuro-WD compared to controls and hep-WD (P < 0.001). In basal ganglia, lower T2 and T2 * were found in neuro-WD compared to controls (P < 0.01) and hep-WD (P < 0.05) at 3.0T. Much smaller intergroup differences for T2 in basal ganglia were observed at 1.5T compared to 3.0T. In the thalamus, increased susceptibility in neuro-WD was accompanied by increased T1 at both field strengths (P < 0.001 to both groups), and an increased T2 at 1.5T only (P < 0.001 to both groups). DATA CONCLUSION: We observed significant residual brain MRI abnormalities in neuro-WD but not in hep-WD patients on chronic anticopper treatment. Patterns of changes were suggestive of iron accumulation in the basal ganglia and demyelination in the thalamus; 3.0T was more sensitive for detection of the former and 1.5T of the latter abnormality. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1829-1835.


Asunto(s)
Degeneración Hepatolenticular , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Estudios Transversales , Degeneración Hepatolenticular/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA