RESUMEN
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
Asunto(s)
Internacionalidad , Programas Nacionales de Salud , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación Completa del Genoma , Complejo 2-3 Proteico Relacionado con la Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Bases de Datos Factuales , Eritrocitos/metabolismo , Factor de Transcripción GATA1/genética , Humanos , Fenotipo , Sitios de Carácter Cuantitativo , Receptores de Trombopoyetina/genética , Medicina Estatal , Reino UnidoRESUMEN
Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.
Asunto(s)
Amiloidosis , Apolipoproteínas A , Nefritis Intersticial , Insuficiencia Renal Crónica , Humanos , Persona de Mediana Edad , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/genética , Nefritis Intersticial/complicaciones , Mutación , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/complicacionesRESUMEN
BACKGROUND: Idiop athic nephrotic syndrome (INS) is classified in children according to response to initial corticosteroid therapy into steroid-sensitive (SSNS) and steroid-resistant nephrotic syndrome (SRNS), and in adults according to histology into minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS). However, there is well-recognised phenotypic overlap between these entities. Genome-wide association studies (GWAS) have shown a strong association between SSNS and variation at HLA, suggesting an underlying immunological basis. We sought to determine whether a risk score generated from genetic variants associated with SSNS could be used to gain insight into the pathophysiology of INS presenting in other ways. METHODS: We developed an SSNS genetic risk score (SSNS-GRS) from the five variants independently associated with childhood SSNS in a previous European GWAS. We quantified SSNS-GRS in independent cohorts of European individuals with childhood SSNS, non-monogenic SRNS, MCD, and FSGS, and contrasted them with SSNS-GRS quantified in individuals with monogenic SRNS, membranous nephropathy (a different immune-mediated disease-causing nephrotic syndrome), and healthy controls. RESULTS: The SSNS-GRS was significantly elevated in cohorts with SSNS, non-monogenic SRNS, MCD, and FSGS compared to healthy participants and those with membranous nephropathy. The SSNS-GRS in all cohorts with non-monogenic INS were also significantly elevated compared to those with monogenic SRNS. CONCLUSIONS: The shared genetic risk factors among patients with different presentations of INS strongly suggests a shared autoimmune pathogenesis when monogenic causes are excluded. Use of the SSNS-GRS, in addition to testing for monogenic causes, may help to classify patients presenting with INS. A higher resolution version of the Graphical abstract is available as Supplementary information.
Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Niño , Humanos , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/genética , Nefrosis Lipoidea/diagnóstico , Nefrosis Lipoidea/tratamiento farmacológico , Nefrosis Lipoidea/genética , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/genética , Estudio de Asociación del Genoma Completo , Esteroides , Factores de RiesgoRESUMEN
Immune thrombotic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types. Associations were functionally investigated using expression quantitative trait loci (eQTL), and motif binding prediction software. Independent associations consistent with previous findings in iTTP were detected at the HLA locus and in addition a novel association was detected on chromosome 3 (rs9884090, P=5.22x10-10, odds ratio 0.40) in the UK discovery cohort. Meta-analysis, including the French replication cohort, strengthened the associations. The haploblock containing rs9884090 is associated with reduced protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL P<0.05), and functional annotation suggested a potential causative variant (rs71767581). This work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-translational modification of its targets may influence disease susceptibility.
Asunto(s)
Púrpura Trombocitopénica Idiopática , Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Glucosiltransferasas/genética , Humanos , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Trombótica/genéticaRESUMEN
[This corrects the article DOI: 10.1371/journal.pgen.1007329.].
RESUMEN
Primary leiomyosarcoma of the fallopian tube is a very rare neoplasm with descriptions limited to case reports. We present the case of a 46-yr-old woman with a history of renal transplantation in whom a primary leiomyosarcoma of the fallopian tube was identified incidentally following hysterectomy and bilateral salpingectomy undertaken for a uterine fibroid. The tumor demonstrated classic morphological and immunohistochemical features of a leiomyosarcoma. It appeared localized to the fallopian tube and was completely resected. Adjuvant therapy was not given but active surveillance initiated. After 14 mo of follow-up, there was no evidence of disease recurrence. We review cases from the past 20 yr with a focus on management and outcomes. Given the rarity of this disease, continued publication of case reports and the creation of a centralized case registry would be of benefit.
Asunto(s)
Neoplasias de las Trompas Uterinas/diagnóstico , Leiomioma/diagnóstico , Leiomiosarcoma/diagnóstico , Supervivencia sin Enfermedad , Neoplasias de las Trompas Uterinas/patología , Neoplasias de las Trompas Uterinas/cirugía , Trompas Uterinas/patología , Femenino , Humanos , Histerectomía , Huésped Inmunocomprometido , Leiomioma/patología , Leiomiosarcoma/patología , Leiomiosarcoma/cirugía , Persona de Mediana Edad , SalpingectomíaRESUMEN
As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.
Asunto(s)
Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Judíos/genética , Enfermedades Raras/genética , Algoritmos , Enfermedad de Crohn/epidemiología , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Modelos Genéticos , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Enfermedades Raras/epidemiologíaRESUMEN
BACKGROUND: Primary membranoproliferative GN, including complement 3 (C3) glomerulopathy, is a rare, untreatable kidney disease characterized by glomerular complement deposition. Complement gene mutations can cause familial C3 glomerulopathy, and studies have reported rare variants in complement genes in nonfamilial primary membranoproliferative GN. METHODS: We analyzed whole-genome sequence data from 165 primary membranoproliferative GN cases and 10,250 individuals without the condition (controls) as part of the National Institutes of Health Research BioResource-Rare Diseases Study. We examined copy number, rare, and common variants. RESULTS: Our analysis included 146 primary membranoproliferative GN cases and 6442 controls who were unrelated and of European ancestry. We observed no significant enrichment of rare variants in candidate genes (genes encoding components of the complement alternative pathway and other genes associated with the related disease atypical hemolytic uremic syndrome; 6.8% in cases versus 5.9% in controls) or exome-wide. However, a significant common variant locus was identified at 6p21.32 (rs35406322) (P=3.29×10-8; odds ratio [OR], 1.93; 95% confidence interval [95% CI], 1.53 to 2.44), overlapping the HLA locus. Imputation of HLA types mapped this signal to a haplotype incorporating DQA1*05:01, DQB1*02:01, and DRB1*03:01 (P=1.21×10-8; OR, 2.19; 95% CI, 1.66 to 2.89). This finding was replicated by analysis of HLA serotypes in 338 individuals with membranoproliferative GN and 15,614 individuals with nonimmune renal failure. CONCLUSIONS: We found that HLA type, but not rare complement gene variation, is associated with primary membranoproliferative GN. These findings challenge the paradigm of complement gene mutations typically causing primary membranoproliferative GN and implicate an underlying autoimmune mechanism in most cases.
Asunto(s)
Complemento C3/inmunología , Glomerulonefritis Membranoproliferativa/genética , Secuenciación Completa del Genoma , Factor Nefrítico del Complemento 3/análisis , Femenino , Glomerulonefritis Membranoproliferativa/etiología , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Humanos , Masculino , SerogrupoRESUMEN
BACKGROUND: Steroid-sensitive nephrotic syndrome (SSNS), the most common form of nephrotic syndrome in childhood, is considered an autoimmune disease with an established classic HLA association. However, the precise etiology of the disease is unclear. In other autoimmune diseases, the identification of loci outside the classic HLA region by genome-wide association studies (GWAS) has provided critical insights into disease pathogenesis. Previously conducted GWAS of SSNS have not identified non-HLA loci achieving genome-wide significance. METHODS: In an attempt to identify additional loci associated with SSNS, we conducted a GWAS of a large cohort of European ancestry comprising 422 ethnically homogeneous pediatric patients and 5642 ethnically matched controls. RESULTS: The GWAS found three loci that achieved genome-wide significance, which explain approximately 14% of the genetic risk for SSNS. It confirmed the previously reported association with the HLA-DR/DQ region (lead single-nucleotide polymorphism [SNP] rs9273542, P=1.59×10-43; odds ratio [OR], 3.39; 95% confidence interval [95% CI], 2.86 to 4.03) and identified two additional loci outside the HLA region on chromosomes 4q13.3 and 6q22.1. The latter contains the calcium homeostasis modulator family member 6 gene CALHM6 (previously called FAM26F). CALHM6 is implicated in immune response modulation; the lead SNP (rs2637678, P=1.27×10-17; OR, 0.51; 95% CI, 0.44 to 0.60) exhibits strong expression quantitative trait loci effects, the risk allele being associated with lower lymphocytic expression of CALHM6. CONCLUSIONS: Because CALHM6 is implicated in regulating the immune response to infection, this may provide an explanation for the typical triggering of SSNS onset by infections. Our results suggest that a genetically conferred risk of immune dysregulation may be a key component in the pathogenesis of SSNS.
Asunto(s)
Canales de Calcio/genética , Glicoproteínas de Membrana/genética , Síndrome Nefrótico/genética , Esteroides/uso terapéutico , Alelos , Proteína de Unión a Andrógenos/genética , Niño , Bases de Datos Factuales , Epítopos/química , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Cadenas alfa de HLA-DQ/genética , Cadenas beta de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Humanos , Sistema Inmunológico , Masculino , Síndrome Nefrótico/tratamiento farmacológico , Oportunidad Relativa , Péptidos/química , Polimorfismo de Nucleótido Simple , Sitios de Carácter CuantitativoRESUMEN
Oligogenic inheritance implies a role for several genetic factors in disease etiology. We studied oligogenic inheritance in Parkinson's (PD) by assessing the potential burden of additional rare variants in established Mendelian genes and/or GBA, in individuals with and without a primary pathogenic genetic cause in two large independent cohorts totaling 7,900 PD cases and 6,166 controls. An excess (≥30%) of cases with a recognised primary genetic cause had ≥1 additional rare variants in Mendelian PD genes, as compared with no known mutation PD cases (17%) and unaffected controls (16%), supporting our hypothesis. Carriers of additional Mendelian gene variants have younger ages at onset (AAO). The effect of additional Mendelian variants in LRRK2 G2019S mutation carriers, of which ATP13A2 variation is particularly common, may account for some of the variation in penetrance. About 10% of No Known Mutation-PD cases harbour a rare GBA variant compared to known pathogenic mutation PD cases (8%) and controls (5%), with carriers having earlier AAOs. Together, the data suggest that the oligogenic inheritance of rare Mendelian variants may be important in patient with a primary pathogenic cause, whereas GBA increases risk across all forms of PD. This study highlights the potential genetic complexity of Mendelian PD. The identification of potential modifying variants provides new insights into disease mechanisms by potentially separating relevant from benign variants and by the interaction between genes in specific pathways. In the future this may be relevant to genetic testing and counselling of patients with PD and their families.
Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Herencia Multifactorial/genética , Enfermedad de Parkinson/genética , Edad de Inicio , Femenino , Genotipo , Humanos , Masculino , Mutación , Enfermedad de Parkinson/patología , Factores de RiesgoRESUMEN
BACKGROUND AND AIMS: The inflammatory bowel diseases (IBD) are particularly common among the Ashkenazi Jewish (AJ) population. Population-specific estimates of familial risk are important for counseling; however, relatively small cohorts of AJ IBD patients have been analyzed for familial risk to date. This study aimed to recruit a new cohort of AJ IBD patients, mainly from the UK, to determine the familial occurrence of disease. METHODS: A total of 864 AJ IBD patients were recruited through advertisements, hospital clinics, and primary care. Participants were interviewed about their Jewish ancestry, disease phenotype, age of diagnosis, and family history of disease. Case notes were reviewed. RESULTS: The 864 probands comprised 506 sporadic and 358 familial cases, the latter with a total of 625 affected relatives. Of the UK cases, 40% had a positive family history with 25% having at least one affected first-degree relative. These percentages were lower among those recruited through hospital clinics and primary care (33% for all relatives and 22% among first-degree relatives). Examining all probands, the relative risk of IBD for offspring, siblings, and parents was 10.5, 7.4, and 4, respectively. Age of diagnosis was significantly lower in familial versus sporadic patients with Crohn's disease. CONCLUSIONS: This study reports familial risk estimates for a significant proportion of the AJ IBD population in the UK. The high rate of a positive family history in this cohort may reflect the greater genetic burden for IBD among AJs. These data are of value in predicting the likelihood of future recurrence of IBD in AJ families.
Asunto(s)
Enfermedades Inflamatorias del Intestino/genética , Adulto , Edad de Inicio , Estudios de Cohortes , Humanos , Enfermedades Inflamatorias del Intestino/etnología , Reino Unido/epidemiología , Adulto JovenRESUMEN
IgA nephropathy (IgAN), an important cause of kidney failure, is characterized by glomerular IgA deposition and is associated with changes in O-glycosylation of the IgA1 molecule. Here, we sought to identify genetic factors contributing to levels of galactose-deficient IgA1 (Gd-IgA1) in white and Chinese populations. Gd-IgA1 levels were elevated in IgAN patients compared with ethnically matched healthy subjects and correlated with evidence of disease progression. White patients with IgAN exhibited significantly higher Gd-IgA1 levels than did Chinese patients. Among individuals without IgAN, Gd-IgA1 levels did not correlate with kidney function. Gd-IgA1 level heritability (h2), estimated by comparing midparental and offspring Gd-IgA1 levels, was 0.39. Genome-wide association analysis by linear regression identified alleles at a single locus spanning the C1GALT1 gene that strongly associated with Gd-IgA1 level (ß=0.26; P=2.35×10-9). This association was replicated in a genome-wide association study of separate cohorts comprising 308 patients with membranous GN from the UK (P<1.00×10-6) and 622 controls with normal kidney function from the UK (P<1.00×10-10), and in a candidate gene study of 704 Chinese patients with IgAN (P<1.00×10-5). The same extended haplotype associated with elevated Gd-IgA1 levels in all cohorts studied. C1GALT1 encodes a galactosyltransferase enzyme that is important in O-galactosylation of glycoproteins. These findings demonstrate that common variation at C1GALT1 influences Gd-IgA1 level in the population, which independently associates with risk of progressive IgAN, and that the pathogenic importance of changes in IgA1 O-glycosylation may vary between white and Chinese patients with IgAN.
Asunto(s)
Galactosa/metabolismo , Galactosiltransferasas/genética , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Inmunoglobulina A/metabolismo , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Glicosilación , Humanos , MasculinoRESUMEN
BACKGROUND & AIMS: Crohn's disease (CD) is a highly heritable disease that is particularly common in the Ashkenazi Jewish population. We studied 2 large Ashkenazi Jewish families with a high prevalence of CD in an attempt to identify novel genetic risk variants. METHODS: Ashkenazi Jewish patients with CD and a positive family history were recruited from the University College London Hospital. We used genome-wide, single-nucleotide polymorphism data to assess the burden of common CD-associated risk variants and for linkage analysis. Exome sequencing was performed and rare variants that were predicted to be deleterious and were observed at a high frequency in cases were prioritized. We undertook within-family association analysis after imputation and assessed candidate variants for evidence of association with CD in an independent cohort of Ashkenazi Jewish individuals. We examined the effects of a variant in DUOX2 on hydrogen peroxide production in HEK293 cells. RESULTS: We identified 2 families (1 with >800 members and 1 with >200 members) containing 54 and 26 cases of CD or colitis, respectively. Both families had a significant enrichment of previously described common CD-associated risk variants. No genome-wide significant linkage was observed. Exome sequencing identified candidate variants, including a missense mutation in DUOX2 that impaired its function and a frameshift mutation in CSF2RB that was associated with CD in an independent cohort of Ashkenazi Jewish individuals. CONCLUSIONS: In a study of 2 large Ashkenazi Jewish with multiple cases of CD, we found the genetic basis of the disease to be complex, with a role for common and rare genetic variants. We identified a frameshift mutation in CSF2RB that was replicated in an independent cohort. These findings show the value of family studies and the importance of the innate immune system in the pathogenesis of CD.
Asunto(s)
Enfermedad de Crohn/genética , Subunidad beta Común de los Receptores de Citocinas/genética , Judíos/genética , NADPH Oxidasas/genética , Linaje , Adolescente , Edad de Inicio , Enfermedad de Crohn/etnología , Oxidasas Duales , Exoma , Femenino , Mutación del Sistema de Lectura , Ligamiento Genético , Predisposición Genética a la Enfermedad , Células HEK293/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony-stimulating factor 2-receptor ß common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and granulocyte-macrophage colony-stimulating factor-responsive cells were defined by adenomatous polyposis coli (APC) time-of-flight mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and the expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P = 8.52 × 10(-4)); the finding was validated in the replication cohort (combined P = 3.42 × 10(-6)). Incubation of intestinal lamina propria leukocytes with granulocyte-macrophage colony-stimulating factor resulted in high levels of phosphorylation of signal transducer and activator of transcription (STAT5) and lesser increases in phosphorylation of extracellular signal-regulated kinase and AK straining transforming (AKT). Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 after stimulation with granulocyte-macrophage colony-stimulating factor, compared with cells transfected with control CSF2RB, indicating a dominant-negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to granulocyte-macrophage colony-stimulating factor and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to granulocyte-macrophage colony-stimulating factor, providing an additional mechanism for alterations to the innate immune response in individuals with CD.
Asunto(s)
Enfermedad de Crohn/genética , Subunidad beta Común de los Receptores de Citocinas/genética , Mutación del Sistema de Lectura , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Judíos/genética , Estudios de Casos y Controles , Enfermedad de Crohn/etnología , Enfermedad de Crohn/patología , Femenino , Humanos , Intestinos/citología , Intestinos/patología , Masculino , Monocitos/metabolismo , Factores de Riesgo , Transducción de Señal/genéticaRESUMEN
BACKGROUND: The ability to identify regions of the genome inherited with a dominant trait in one or more families has become increasingly valuable with the wide availability of high throughput sequencing technology. While a number of methods exist for mapping of homozygous variants segregating with recessive traits in consanguineous families, dominant conditions are conventionally analysed by linkage analysis, which requires computationally demanding haplotype reconstruction from marker genotypes and, even using advanced parallel approximation implementations, can take substantial time, particularly for large pedigrees. In addition, linkage analysis lacks sensitivity in the presence of phenocopies (individuals sharing the trait but not the genetic variant responsible). Combinatorial Conflicting Homozygosity (CCH) analysis uses high density biallelic single nucleotide polymorphism (SNP) marker genotypes to identify genetic loci within which consecutive markers are not homozygous for different alleles. This allows inference of identical by descent (IBD) inheritance of a haplotype among a set or subsets of related or unrelated individuals. RESULTS: A single genome-wide conflicting homozygosity analysis takes <3 seconds and parallelisation permits multiple combinations of subsets of individuals to be analysed quickly. Analysis of unrelated individuals demonstrated that in the absence of IBD inheritance, runs of no CH exceeding 4 cM are not observed. At this threshold, CCH is >97% sensitive and specific for IBD regions within a pedigree exceeding this length and was able to identify the locus responsible for a dominantly inherited kidney disease in a Turkish Cypriot family in which six out 17 affected individuals were phenocopies. It also revealed shared ancestry at the disease-linked locus among affected individuals from two different Cypriot populations. CONCLUSIONS: CCH does not require computationally demanding haplotype reconstruction and can detect regions of shared inheritance of a haplotype among subsets of related or unrelated individuals directly from SNP genotype data. In contrast to parametric linkage allowing for phenocopies, CCH directly provides the exact number and identity of individuals sharing each locus. CCH can also identify regions of shared ancestry among ostensibly unrelated individuals who share a trait. CCH is implemented in Python and is freely available (as source code) from http://sourceforge.net/projects/cchsnp/ .
Asunto(s)
Genes Dominantes , Genómica/métodos , Fenotipo , Algoritmos , Ligamiento Genético , Genotipo , Homocigoto , Humanos , Enfermedades Renales/genética , Desequilibrio de Ligamiento , Linaje , Polimorfismo de Nucleótido Simple , Recombinación GenéticaRESUMEN
Crohn's disease (CD) is a complex and highly heterogeneous chronic inflammatory disorder, primarily affecting the gastrointestinal tract. Genetic and functional studies have highlighted a key role for innate immunity in its pathogenesis. Profound systemic defects in innate immunity and acute inflammation are understood to result in markedly delayed clearance of bacteria from the tissues, leading to local chronic granulomatous inflammation and compensatory adaptive immunological changes. Macrophages, key orchestrators of acute inflammation, are likely to play an important role in the initial impaired innate immune response. Monocyte-derived macrophages from CD patients stimulated with Escherichia coli were shown to release attenuated levels of tumour necrosis factor and interferon-γ with normal secretion of interleukin-8 (IL-8), IL-10 and IL-6. In controls, the secretion of these cytokines was strongly positively correlated, which was not seen with CD macrophages. The transcriptomes of CD and control macrophages were examined in an attempt to understand the molecular basis of this defect. There were no differentially expressed genes identified between the two groups, consistent with genetic heterogeneity; however, a number of molecules were found to be under-expressed in subgroups of CD patients. The most common of these was optineurin (OPTN) which was under-expressed in approximately 10% of the CD patients. Reduced OPTN expression coincided with lower intracellular protein levels and diminished cytokine secretion after bacterial stimulation both in the patients and with small interfering RNA knockdown in THP-1 cells. Identifying and studying subgroups of patients with shared defective gene expression could aid our understanding of the mechanisms underlying highly heterogeneous diseases such as CD.
Asunto(s)
Enfermedad de Crohn/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Macrófagos/inmunología , Factor de Transcripción TFIIIA/inmunología , Adulto , Proteínas de Ciclo Celular , Línea Celular Tumoral , Enfermedad de Crohn/patología , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Macrófagos/patología , Masculino , Proteínas de Transporte de Membrana , Persona de Mediana EdadRESUMEN
As vast histological archives are digitised, there is a pressing need to be able to associate specific tissue substructures and incident pathology to disease outcomes without arduous annotation. Here, we learn self-supervised representations using a Vision Transformer, trained on 1.7 M histology images across 23 healthy tissues in 838 donors from the Genotype Tissue Expression consortium (GTEx). Using these representations, we can automatically segment tissues into their constituent tissue substructures and pathology proportions across thousands of whole slide images, outperforming other self-supervised methods (43% increase in silhouette score). Additionally, we can detect and quantify histological pathologies present, such as arterial calcification (AUROC = 0.93) and identify missing calcification diagnoses. Finally, to link gene expression to tissue morphology, we introduce RNAPath, a set of models trained on 23 tissue types that can predict and spatially localise individual RNA expression levels directly from H&E histology (mean genes significantly regressed = 5156, FDR 1%). We validate RNAPath spatial predictions with matched ground truth immunohistochemistry for several well characterised control genes, recapitulating their known spatial specificity. Together, these results demonstrate how self-supervised machine learning when applied to vast histological archives allows researchers to answer questions about tissue pathology, its spatial organisation and the interplay between morphological tissue variability and gene expression.
Asunto(s)
Aprendizaje Automático Supervisado , Humanos , ARN/genética , ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Especificidad de Órganos/genética , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
BACKGROUNDCystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases.METHODSUsing whole-genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies.RESULTSIn 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK Biobank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations, but suggested this category of variation contributes 3%-9% to the heritability of CyKD across European ancestries.CONCLUSIONBy providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counseling in the clinic.
Asunto(s)
Enfermedades Renales Quísticas , Secuenciación Completa del Genoma , Humanos , Masculino , Femenino , Enfermedades Renales Quísticas/genética , Colágeno Tipo IV/genética , Variación Genética , Frecuencia de los Genes , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Autoantígenos , Receptores de Superficie CelularRESUMEN
The neutrophil plays a central role in the acute inflammatory response, a crucial mechanism required for the efficient clearance of invading microorganisms and antigenic material. Patients with primary immunodeficiencies of neutrophil function, particularly chronic granulomatous disease, are predisposed to develop bowel inflammation that is indistinguishable from Crohn's disease (CD) on the basis of clinical, endoscopic and histopathological features. The intrinsic function of the neutrophil is normal in the vast majority of patients with CD; however, there is clear evidence of an impairment of neutrophil recruitment to sites of trauma and bacterial infection. This is associated with an inability to adequately clear bacteria that have penetrated the tissues, resulting in the formation of granulomata, the histological hallmark of the disease, and the subsequent initiation of a chronic adaptive immune response. The reduced secretion of proinflammatory cytokines by macrophages, most notably TNF-α, may account for the attenuated neutrophil recruitment observed in CD. Stimulation of the innate immune system in CD, particularly in patients in remission, may be an alternative therapeutic strategy that could reduce the risk of future disease relapses.
Asunto(s)
Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Neutrófilos/patología , Animales , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Modelos InmunológicosRESUMEN
Introduction: Steroid-sensitive nephrotic syndrome (SSNS) is the most common form of kidney disease in children worldwide. Genome-wide association studies (GWAS) have demonstrated the association of SSNS with genetic variation at HLA-DQ/DR and have identified several non-HLA loci that aid in further understanding of disease pathophysiology. We sought to identify additional genetic loci associated with SSNS in children of Sri Lankan and European ancestry. Methods: We conducted a GWAS in a cohort of Sri Lankan individuals comprising 420 pediatric patients with SSNS and 2339 genetic ancestry matched controls obtained from the UK Biobank. We then performed a transethnic meta-analysis with a previously reported European cohort of 422 pediatric patients and 5642 controls. Results: Our GWAS confirmed the previously reported association of SSNS with HLA-DR/DQ (rs9271602, P = 1.12 × 10-27, odds ratio [OR] = 2.75). Transethnic meta-analysis replicated these findings and identified a novel association at AHI1 (rs2746432, P = 2.79 × 10-8, OR = 1.37), which was also replicated in an independent South Asian cohort. AHI1 is implicated in ciliary protein transport and immune dysregulation, with rare variation in this gene contributing to Joubert syndrome type 3. Conclusions: Common variation in AHI1 confers risk of the development of SSNS in both Sri Lankan and European populations. The association with common variation in AHI1 further supports the role of immune dysregulation in the pathogenesis of SSNS and demonstrates that variation across the allele frequency spectrum in a gene can contribute to disparate monogenic and polygenic diseases.