RESUMEN
BACKGROUND: Care access remains a major social determinant of health. Safety net clinics may not be numerically sufficient to meet the health care demand for vulnerable populations. Community pharmacists remain a trusted health care provider and serve as first-line care access points. To date, Georgia care access points by safety net clinics and community pharmacies have not been compared. OBJECTIVES: This study sought to evaluate care access across Georgia. County health outcomes and health factor rankings were compared with mortality prevalence of respiratory disease, diabetes mellitus, kidney disease, and a composite of ambulatory care sensitive conditions emergency department (ER) utilization and hospital discharge. In addition, this study sought to determine whether care access points improve if community pharmacies were to provide primary care services. DESIGN AND OUTCOME MEASURES: Geographic information systems mapping was used to locate safety net clinics and community pharmacies. Care access difference was analyzed using a 2-sample t test and health outcomes and rankings were evaluated using ordinary least square regression analysis. RESULTS: A significant difference in care access points was found between safety net clinics and community pharmacies across the state of Georgia (P < 0.05). Mortality prevalence for respiratory disease (P < 0.01), diabetes mellitus (P < 0.1), kidney disease (P < 0.05), ER utilization (P < 0.01), and hospital discharge (P < 0.01) was lower in counties in the top 50% than the bottom 50% health outcome ranking and health factor ranking. Approximately 95% of counties (n = 151) would experience more than a 50% increase in primary care access points by way of community pharmacies. CONCLUSION: Community pharmacies are well positioned to address primary care disease states, reduce health care resource strain, and decrease preventable health care resource utilization. Leveraging pharmacists to provide primary care services can address care access issues and may improve care quality and reduce preventable hospitalizations and ER utilization in Georgia.
Asunto(s)
Servicios Comunitarios de Farmacia , Diabetes Mellitus , Enfermedades Renales , Farmacias , Humanos , Georgia , Farmacéuticos , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Evaluación de Resultado en la Atención de SaludRESUMEN
Although systemic chemotherapy remains the standard of care for TNBC, even combination chemotherapy is often ineffective. The identification of biomarkers for differential chemotherapy response would allow for the selection of responsive patients, thus maximizing efficacy and minimizing toxicities. Here, we leverage TNBC PDXs to identify biomarkers of response. To demonstrate their ability to function as a preclinical cohort, PDXs were characterized using DNA sequencing, transcriptomics, and proteomics to show consistency with clinical samples. We then developed a network-based approach (CTD/WGCNA) to identify biomarkers of response to carboplatin (MSI1, TMSB15A, ARHGDIB, GGT1, SV2A, SEC14L2, SERPINI1, ADAMTS20, DGKQ) and docetaxel (c, MAGED4, CERS1, ST8SIA2, KIF24, PARPBP). CTD/WGCNA multigene biomarkers are predictive in PDX datasets (RNAseq and Affymetrix) for both taxane- (docetaxel or paclitaxel) and platinum-based (carboplatin or cisplatin) response, thereby demonstrating cross-expression platform and cross-drug class robustness. These biomarkers were also predictive in clinical datasets, thus demonstrating translational potential.
RESUMEN
The pan-HER tyrosine kinase inhibitor (TKI) neratinib is therapeutically active against metastatic breast cancers harboring activating HER2 mutations, but responses are variable and often not durable. Here we demonstrate that recurrent HER2 mutations have differential effects on endocrine therapy responsiveness, metastasis, and pan-HER TKI therapeutic sensitivity. The prevalence and prognostic significance may also depend on whether the HER2 mutant has arisen in the context of lobular versus ductal histology. The most highly recurrent HER2 mutant, L755S, was particularly resistant to neratinib but sensitive to the pan-HER TKI poziotinib, alone or in combination with fulvestrant. Poziotinib reduced tumor growth, diminished multiorgan metastasis, and inhibited mTOR activation more effectively than neratinib. Similar therapeutic effects of poziotinib were observed in both an engineered HER2L755S MCF7 model and a patient-derived xenograft harboring a HER2G778_P780dup mutation. Overall, these findings support the need for clinical evaluation of poziotinib for the treatment of HER2-mutant metastatic breast cancer. SIGNIFICANCE: Evaluation of the functional impact of HER2 mutations on therapy-induced resistance and metastasis identifies robust antitumor activity of poziotinib and supports the clinical evaluation of poziotinib in ER+ HER2 mutant breast cancer.
Asunto(s)
Neoplasias de la Mama , Quinolinas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Quinolinas/farmacología , Quinolinas/uso terapéutico , Receptor ErbB-2/genéticaRESUMEN
Over the past few years, numerous nanotechnology-based drug delivery systems have been developed in an effort to maximize therapeutic effectiveness of conventional drug delivery, while limiting undesirable side effects. Among these, carbon nanotubes (CNTs) are of special interest as potential drug delivery agents due to their numerous unique and advantageous physical and chemical properties. Here, we show in vivo favorable biodistribution and enhanced therapeutic efficacy of cisplatin (CDDP) encapsulated within ultra-short single-walled carbon nanotube capsules (CDDP@US-tubes) using three different human breast cancer xenograft models. In general, the CDDP@US-tubes demonstrated greater efficacy in suppressing tumor growth than free CDDP in both MCF-7 cell line xenograft and BCM-4272 patient-derived xenograft (PDX) models. The CDDP@US-tubes also demonstrated a prolonged circulation time compared to free CDDP which enhanced permeability and retention (EPR) effects resulting in significantly more CDDP accumulation in tumors, as determined by platinum (Pt) analysis via inductively-coupled plasma mass spectrometry (ICP-MS). STATEMENT OF SIGNIFICANCE: Over the past decade, drug-loaded nanocarriers have been widely fabricated and studied to enhance tumor specific delivery. Among the diverse classes of nanomaterials, carbon nanotubes (CNTs), or more specifically ultra-short single-walled carbon nanocapsules (US-tubes), have been shown to be a popular, new platform for the delivery of various medical agents for both imaging and therapeutic purposes. Here, for the first time, we have shown that US-tubes can be utilized as a drug delivery platform in vivo to deliver the chemotherapeutic drug, cisplatin (CDDP) as CDDP@US-tubes. The studies have demonstrated the ability of the US-tube platform to promote the delivery of encapsulated CDDP by increasing the accumulation of drug in breast cancer resistance cells, which reveals how CDDP@US-tubes help overcome CDDP resistance.