Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 141(8): 1780-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24715465

RESUMEN

Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.


Asunto(s)
Relojes Biológicos , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Somitos/citología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Recuento de Células , Embrión no Mamífero/metabolismo , Respuesta al Choque Térmico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Factores de Tiempo , Transgenes , Pez Cebra/embriología , Pez Cebra/metabolismo
2.
Development ; 140(2): 444-53, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23250218

RESUMEN

A gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay - the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , ARN Polimerasa II/metabolismo , Somitos/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fluoresceínas/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación/métodos , Modelos Biológicos , Modelos Teóricos , Mutación , Oscilometría/métodos , ARN Polimerasa II/genética , Temperatura , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
PLoS Biol ; 11(6): e1001586, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23776410

RESUMEN

FBW7 is a crucial component of an SCF-type E3 ubiquitin ligase, which mediates degradation of an array of different target proteins. The Fbw7 locus comprises three different isoforms, each with its own promoter and each suspected to have a distinct set of substrates. Most FBW7 targets have important functions in developmental processes and oncogenesis, including Notch proteins, which are functionally important substrates of SCF(Fbw7). Notch signalling controls a plethora of cell differentiation decisions in a wide range of species. A prominent role of this signalling pathway is that of mediating lateral inhibition, a process where exchange of signals that repress Notch ligand production amplifies initial differences in Notch activation levels between neighbouring cells, resulting in unequal cell differentiation decisions. Here we show that the downstream Notch signalling effector HES5 directly represses transcription of the E3 ligase Fbw7ß, thereby directly bearing on the process of lateral inhibition. Fbw7(Δ/+) heterozygous mice showed haploinsufficiency for Notch degradation causing impaired intestinal progenitor cell and neural stem cell differentiation. Notably, concomitant inactivation of Hes5 rescued both phenotypes and restored normal stem cell differentiation potential. In silico modelling suggests that the NICD/HES5/FBW7ß positive feedback loop underlies Fbw7 haploinsufficiency. Thus repression of Fbw7ß transcription by Notch signalling is an essential mechanism that is coupled to and required for the correct specification of cell fates induced by lateral inhibition.


Asunto(s)
Linaje de la Célula , Proteínas F-Box/metabolismo , Retroalimentación Fisiológica , Intestinos/citología , Células-Madre Neurales/citología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Recuento de Células , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Regulación de la Expresión Génica , Sitios Genéticos , Células Caliciformes/citología , Células Caliciformes/metabolismo , Células HCT116 , Haploinsuficiencia , Humanos , Ratones Noqueados , Modelos Biológicos , Células-Madre Neurales/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
PLoS Comput Biol ; 11(11): e1004459, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26588097

RESUMEN

The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biología Computacional , Receptores Notch/genética , Factores de Transcripción/genética , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Development ; 139(24): 4656-65, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23172917

RESUMEN

Somites are formed from the presomitic mesoderm (PSM) and give rise to the axial skeleton and skeletal muscles. The PSM is dynamic; somites are generated at the anterior end, while the posterior end is continually renewed with new cells entering from the tailbud progenitor region. Which genes control the conversion of tailbud progenitors into PSM and how is this process coordinated with cell movement? Using loss- and gain-of-function experiments and heat-shock transgenics we show in zebrafish that the transcription factor Mesogenin 1 (Msgn1), acting with Spadetail (Spt), has a central role. Msgn1 allows progression of the PSM differentiation program by switching off the progenitor maintenance genes ntl, wnt3a, wnt8 and fgf8 in the future PSM cells as they exit from the tailbud, and subsequently induces expression of PSM markers such as tbx24. msgn1 is itself positively regulated by Ntl/Wnt/Fgf, creating a negative-feedback loop that might be crucial to regulate homeostasis of the progenitor population until somitogenesis ends. Msgn1 drives not only the changes in gene expression in the nascent PSM cells but also the movements by which they stream out of the tailbud into the PSM. Loss of Msgn1 reduces the flux of cells out of the tailbud, producing smaller somites and an enlarged tailbud, and, by delaying exhaustion of the progenitor population, results in supernumerary tail somites. Through its combined effects on gene expression and cell movement, Msgn1 (with Spt) plays a key role both in genesis of the paraxial mesoderm and in maintenance of the progenitor population from which it derives.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/genética , Movimiento Celular/genética , Células Madre Embrionarias/fisiología , Mesodermo/embriología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Rastreo Celular , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Somitos/embriología , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/fisiología , Cola (estructura animal)/embriología , Torso/embriología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
6.
Development ; 138(14): 2947-56, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21653612

RESUMEN

We describe the production and characterisation of two monoclonal antibodies, zdc2 and zdd2, directed against the zebrafish Notch ligands DeltaC and DeltaD, respectively. We use our antibodies to show that these Delta proteins can bind to one another homo- and heterophilically, and to study the localisation of DeltaC and DeltaD in the zebrafish nervous system and presomitic mesoderm (PSM). Our findings in the nervous system largely confirm expectations from previous studies, but in the PSM we see an unexpected pattern in which the localisation of DeltaD varies according to the level of expression of DeltaC: in the anterior PSM, where DeltaC is plentiful, the two proteins are colocalised in intracellular puncta, but in the posterior PSM, where DeltaC is at a lower level, DeltaD is seen mainly on the cell surface. Forced overexpression of DeltaC reduces the amount of DeltaD on the cell surface in the posterior PSM; conversely, loss-of-function mutation of DeltaC increases the amount of DeltaD on the cell surface in the anterior PSM. These findings suggest an explanation for a long-standing puzzle regarding the functions of the two Delta proteins in the somite segmentation clock--an explanation that is based on the proposition that they associate heterophilically to activate Notch.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Inmunoprecipitación , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas de la Membrana/inmunología , Mesodermo/metabolismo , Microscopía Confocal , Proteínas del Tejido Nervioso/inmunología , Sistema Nervioso/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Pez Cebra/inmunología
7.
Nature ; 454(7202): 335-9, 2008 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-18563087

RESUMEN

The vertebrate body axis is subdivided into repeated segments, best exemplified by the vertebrae that derive from embryonic somites. The number of somites is precisely defined for any given species but varies widely from one species to another. To determine the mechanism controlling somite number, we have compared somitogenesis in zebrafish, chicken, mouse and corn snake embryos. Here we present evidence that in all of these species a similar 'clock-and-wavefront' mechanism operates to control somitogenesis; in all of them, somitogenesis is brought to an end through a process in which the presomitic mesoderm, having first increased in size, gradually shrinks until it is exhausted, terminating somite formation. In snake embryos, however, the segmentation clock rate is much faster relative to developmental rate than in other amniotes, leading to a greatly increased number of smaller-sized somites.


Asunto(s)
Tipificación del Cuerpo , Embrión de Pollo/embriología , Ratones/embriología , Serpientes/embriología , Somitos/embriología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Factores de Tiempo
8.
Mol Ecol Resour ; 24(1): e13882, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864541

RESUMEN

Transition to novel environments, such as groundwater colonization by surface organisms, provides an excellent research ground to study phenotypic evolution. However, interspecific comparative studies on evolution to groundwater life are few because of the challenge in assembling large ecological and molecular resources for species-rich taxa comprised of surface and subterranean species. Here, we make available to the scientific community an operational set of working tools and resources for the Asellidae, a family of freshwater isopods containing hundreds of surface and subterranean species. First, we release the World Asellidae database (WAD) and its web application, a sustainable and FAIR solution to producing and sharing data and biological material. WAD provides access to thousands of species occurrences, specimens, DNA extracts and DNA sequences with rich metadata ensuring full scientific traceability. Second, we perform a large-scale dated phylogenetic reconstruction of Asellidae to support phylogenetic comparative analyses. Of 424 terminal branches, we identify 34 pairs of surface and subterranean species representing independent replicates of the transition from surface water to groundwater. Third, we exemplify the usefulness of WAD for documenting phenotypic shifts associated with colonization of subterranean habitats. We provide the first phylogenetically controlled evidence that body size of males decreases relative to that of females upon groundwater colonization, suggesting competition for rare receptive females selects for smaller, more agile males in groundwater. By making these tools and resources widely accessible, we open up new opportunities for exploring how phenotypic traits evolve in response to changes in selective pressures and trade-offs during groundwater colonization.


Asunto(s)
Isópodos , Animales , Filogenia , Isópodos/genética , Ecosistema , ADN , Secuencia de Bases
9.
Nat Methods ; 7(3): 219-23, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20139970

RESUMEN

To trace cell lineages in a developing vertebrate and to observe, in vivo, how behaviors of individual cells are affected by the genes they express, we created a zebrafish line containing a transgene called mosaic analysis in zebrafish (MAZe), built around a self-excising hsp70:Cre cassette. Heat shock triggers Cre recombinase-mediated recombination in a random subset of cells, bringing the transcriptional activator Gal4:VP16 under control of the EF1alpha promoter. Gal4-VP16 then activates expression of a fluorescent protein from an upstream activating sequence (UAS) promoter. Marked clones of cells expressing any desired gene product can be generated by crossing MAZe fish with other lines containing UAS-driven transgenes. The number of clones induced, and their time of origin, could be varied by adjusting heat-shock timing and duration. As an alternative to heat shock, we introduced Cre under a tissue-specific promoter in MAZe fish to generate clones in a designated tissue.


Asunto(s)
Mosaicismo , Transgenes , Pez Cebra/genética , Animales , Secuencia de Bases , Fusión Celular , Proteínas HSP70 de Choque Térmico/genética , Integrasas/fisiología , Datos de Secuencia Molecular , Mioblastos/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas , Recombinación Genética
10.
Nat Genet ; 36(7): 750-4, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15170214

RESUMEN

During somitogenesis, a pair of somites buds off from the presomitic mesoderm every 2 hours in mouse embryos, suggesting that somite segmentation is controlled by a biological clock with a 2-hour cycle. Expression of the basic helix-loop-helix factor Hes7, an effector of Notch signaling, follows a 2-hour oscillatory cycle controlled by negative feedback; this is proposed to be the molecular basis for the somite segmentation clock. If the proposal is correct, this clock should depend crucially on the short lifetime of Hes7. To address the biological importance of Hes7 instability, we generated mice expressing mutant Hes7 with a longer half-life (approximately 30 min compared with approximately 22 min for wild-type Hes7) but normal repressor activity. In these mice, somite segmentation and oscillatory expression became severely disorganized after a few normal cycles of segmentation. We simulated this effect mathematically using a direct autorepression model. Thus, instability of Hes7 is essential for sustained oscillation and for its function as a segmentation clock.


Asunto(s)
Somitos , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Ratones , Ratones Endogámicos C3H , Factores de Transcripción/genética
11.
Gastroenterology ; 140(4): 1230-1240.e1-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21238454

RESUMEN

BACKGROUND & AIMS: Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). METHODS: Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). RESULTS: Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. CONCLUSIONS: Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice.


Asunto(s)
Células Madre Adultas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Células Madre Adultas/citología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Diferenciación Celular/fisiología , División Celular/fisiología , Células Caliciformes/citología , Células Caliciformes/metabolismo , Homeostasis/fisiología , Péptidos y Proteínas de Señalización Intercelular/genética , Mucosa Intestinal/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína Jagged-1 , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/fisiología
12.
PLoS Genet ; 4(2): e15, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18248098

RESUMEN

Somite segmentation depends on a gene expression oscillator or clock in the posterior presomitic mesoderm (PSM) and on read-out machinery in the anterior PSM to convert the pattern of clock phases into a somite pattern. Notch pathway mutations disrupt somitogenesis, and previous studies have suggested that Notch signalling is required both for the oscillations and for the read-out mechanism. By blocking or overactivating the Notch pathway abruptly at different times, we show that Notch signalling has no essential function in the anterior PSM and is required only in the posterior PSM, where it keeps the oscillations of neighbouring cells synchronized. Using a GFP reporter for the oscillator gene her1, we measure the influence of Notch signalling on her1 expression and show by mathematical modelling that this is sufficient for synchronization. Our model, in which intracellular oscillations are generated by delayed autoinhibition of her1 and her7 and synchronized by Notch signalling, explains the observations fully, showing that there are no grounds to invoke any additional role for the Notch pathway in the patterning of somite boundaries in zebrafish.


Asunto(s)
Receptores Notch/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mesodermo/embriología , Mesodermo/fisiología , Modelos Biológicos , Mutación , Regiones Promotoras Genéticas , Receptores Notch/genética , Transducción de Señal/efectos de los fármacos , Somitos/efectos de los fármacos , Somitos/embriología , Somitos/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Triglicéridos/administración & dosificación , Triglicéridos/farmacología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Ácido gamma-Aminobutírico/administración & dosificación , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/farmacología
13.
Dev Biol ; 326(1): 86-100, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19013445

RESUMEN

Unlike mammals, birds regenerate auditory hair cells (HCs) after injury. During regeneration, mature non-sensory supporting cells (SCs) leave quiescence and convert into HCs, through non-mitotic or mitotic mechanisms. During embryogenesis, Notch ligands from nascent HCs exert lateral inhibition, restricting HC production. Here, we examined whether Notch signaling (1) is needed in mature birds to maintain the HC/SC pattern in the undamaged auditory epithelium or (2) governs SC behavior once HCs are injured. We show that Notch pathway genes are transcribed in the mature undamaged epithelium, and after HC injury, their transcription is upregulated in the region of highest mitotic activity. In vitro treatment with DAPT, an inhibitor of Notch activity, had no effect on SCs in the undamaged epithelium. Following HC damage, DAPT had no direct effect on SC division. However, after damage, DAPT caused excessive regeneration of HCs at the expense of SCs, through both mitotic and non-mitotic mechanisms. Conversely, overexpression of activated Notch in SCs after damage caused them to maintain their phenotype and inhibited HC regeneration. Therefore, signaling through Notch is not required for SC quiescence in the healthy epithelium or to initiate HC regeneration after damage. Rather, Notch prevents SCs from regenerating excessive HCs after damage.


Asunto(s)
Pollos/fisiología , Células Ciliadas Auditivas/citología , Receptores Notch/fisiología , Regeneración/fisiología , Células Madre/citología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Dipéptidos/farmacología , Epitelio/fisiología , Células Ciliadas Auditivas/fisiología , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/fisiología , Mitosis/fisiología , Células Madre/fisiología , Técnicas de Cultivo de Tejidos
14.
PLoS Biol ; 5(6): e150, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17535112

RESUMEN

The somites of the vertebrate embryo are clocked out sequentially from the presomitic mesoderm (PSM) at the tail end of the embryo. Formation of each somite corresponds to one cycle of oscillation of the somite segmentation clock--a system of genes whose expression switches on and off periodically in the cells of the PSM. We have previously proposed a simple mathematical model explaining how the oscillations, in zebrafish at least, may be generated by a delayed negative feedback loop in which the products of two Notch target genes, her1 and her7, directly inhibit their own transcription, as well as that of the gene for the Notch ligand DeltaC; Notch signalling via DeltaC keeps the oscillations of neighbouring cells in synchrony. Here we subject the model to quantitative tests. We show how to read temporal information from the spatial pattern of stripes of gene expression in the anterior PSM and in this way obtain values for the biosynthetic delays and molecular lifetimes on which the model critically depends. Using transgenic lines of zebrafish expressing her1 or her7 under heat-shock control, we confirm the regulatory relationships postulated by the model. From the timing of somite segmentation disturbances following a pulse of her7 misexpression, we deduce that although her7 continues to oscillate in the anterior half of the PSM, it governs the future somite segmentation behaviour of the cells only while they are in the posterior half. In general, the findings strongly support the mathematical model of how the somite clock works, but they do not exclude the possibility that other oscillator mechanisms may operate upstream from the her7/her1 oscillator or in parallel with it.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Relojes Biológicos/fisiología , Proteínas de la Membrana/genética , Somitos/fisiología , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Respuesta al Choque Térmico/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
15.
Dev Cell ; 4(1): 67-82, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12530964

RESUMEN

Lateral inhibition, mediated by Notch signaling, leads to the selection of cells that are permitted to become neurons within domains defined by proneural gene expression. Reduced lateral inhibition in zebrafish mib mutant embryos permits too many neural progenitors to differentiate as neurons. Positional cloning of mib revealed that it is a gene in the Notch pathway that encodes a RING ubiquitin ligase. Mib interacts with the intracellular domain of Delta to promote its ubiquitylation and internalization. Cell transplantation studies suggest that mib function is essential in the signaling cell for efficient activation of Notch in neighboring cells. These observations support a model for Notch activation where the Delta-Notch interaction is followed by endocytosis of Delta and transendocytosis of the Notch extracellular domain by the signaling cell. This facilitates intramembranous cleavage of the remaining Notch receptor, release of the Notch intracellular fragment, and activation of target genes in neighboring cells.


Asunto(s)
Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas , Ubiquitina/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Western Blotting , Diferenciación Celular , Endocitosis , Regulación de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Ligasas/química , Ligasas/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Neuronas/citología , Fenotipo , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Notch , Médula Espinal/embriología , Médula Espinal/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
16.
Curr Opin Genet Dev ; 14(4): 407-14, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15261657

RESUMEN

In vertebrate embryos, somite segmentation is controlled by a molecular clock, in the form of a transcriptional oscillator that operates in the presomitic mesoderm. Most of the genes implicated in the oscillator belong to the Notch pathway; a recently discovered exception is the Wnt pathway gene Axin2. Experiments have revealed several negative feedback loops that might generate oscillations, leading to at least four different theories. The simplest of these is based on direct autoinhibition of certain members of the hairy/E(spl) family of Notch target genes--Hes7 in the mouse, and her1 and her7 in the zebrafish. A mathematical account of this mechanism explains some surprising observations and suggests that the period of oscillation is chiefly determined by the transcriptional and translational delays--the times required to make a molecule of the mRNA and a molecule of the protein.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , Modelos Biológicos , Vertebrados/embriología , Animales , Proteína Axina , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch , Factores de Tiempo , Factores de Transcripción/metabolismo , Proteínas Wnt
17.
Curr Biol ; 13(16): 1398-408, 2003 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12932323

RESUMEN

BACKGROUND: The pattern of somites is traced out by a mechanism involving oscillating gene expression at the tail end of the embryo. In zebrafish, two linked oscillating genes, her1 and her7, coding for inhibitory gene regulatory proteins, are especially implicated in genesis of the oscillations, while Notch signaling appears necessary for synchronization of adjacent cells. RESULTS: I show by mathematical simulation that direct autorepression of her1 and her7 by their own protein products provides a mechanism for the intracellular oscillator. This mechanism operates robustly even when one allows for the fact that gene regulation is an essentially noisy (stochastic) process. The predicted period is close to the observed period (30 min) and is dictated primarily by the transcriptional delay, the time taken to make an mRNA molecule. Through its coupling to her1/her7 expression, Notch signaling can keep the rapid oscillations in adjacent cells synchronized. When the coupling parameters are varied, however, the model system can switch to oscillations of a much longer period, resembling that of the mouse or chick somitogenesis oscillator and governed by the delays in the Notch pathway. Such Notch-mediated synchronous oscillations are predicted even in the absence of direct her1/her7 autoregulation, through operation of the standard Notch signaling pathway that is usually assumed simply to give lateral inhibition. CONCLUSIONS: Direct autorepression of a gene by its own product can generate oscillations, with a period determined by the transcriptional and translational delays. Simple as they are, such systems show surprising behaviors. To understand them, unaided intuition is not enough: we need mathematics.


Asunto(s)
Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Embrión de Pollo , Retroalimentación , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Mutación , Periodicidad , Receptores Notch , Transducción de Señal , Somitos/metabolismo , Especificidad de la Especie , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
18.
Int J Dev Biol ; 47(4): 263-72, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12755331

RESUMEN

Notch signalling plays a major role in many invertebrate and vertebrate patterning systems. In this paper, we use high-titre, non-replicative pseudotype viruses to show that the two Notch ligands, Delta1 and Serrate1 (Jagged1), have differing activities in the developing chick spinal cord and hindbrain. In the walls of the neural tube, Serrate1 appears not to affect neurogenesis, in contrast to Delta1 which mediates lateral inhibition as elsewhere in the nervous system. In the floorplate we find that there is also a requirement for Notch, but with a different type of dependence on the two Notch ligands: cells with a floorplate character are lost when Notch activity is blocked with dominant-negative, truncated forms of either Delta1 or Serrate1. Our results are consistent with ligand-receptor specificity within the Notch signalling pathway, Serrate1 recognising selectively Notch2 (which is expressed in the floorplate), and Delta1 acting on both Notch2 and Notch1 (which is expressed in the walls of the neural tube).


Asunto(s)
Proteínas de la Membrana/fisiología , Rombencéfalo/embriología , Médula Espinal/embriología , Factores de Transcripción , Animales , Secuencia de Bases , Proteínas de Unión al Calcio , Embrión de Pollo , ADN/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Ligandos , Proteínas de la Membrana/genética , Proteínas/genética , Proteínas/fisiología , Receptor Notch1 , Receptor Notch2 , Receptores de Superficie Celular/fisiología , Receptores Notch , Retroviridae/genética , Proteínas Serrate-Jagged , Transducción de Señal , Transfección
19.
Front Cell Neurosci ; 9: 74, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814931

RESUMEN

The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA