Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38889013

RESUMEN

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Asunto(s)
Contaminantes Atmosféricos , Atmósfera , Aprendizaje Automático , Contaminantes Atmosféricos/análisis , Atmósfera/química , Óxidos de Nitrógeno/análisis , Contaminación del Aire , Ozono/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis
2.
Eur J Pharmacol ; 977: 176583, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679123

RESUMEN

Dry eye disease (DED) is a complex disorder driven by several factors like reduced tear production, increased evaporation, or poor tear quality. Oxidative stress plays a key role by exacerbating the inflammatory cycle. Previous studies explored antioxidants for DED treatment due to the link between oxidative damage and inflammation. Biochanin A (BCA) is a bioisoflavone from red clover with potent anti-inflammatory effects. This study investigated BCA's therapeutic potential for DED. Human corneal epithelial cells were cultured under hyperosmotic conditions to mimic DED. BCA treatment increased cell viability and decreased apoptosis and inflammatory cytokine expression. A DED mouse model was developed using female C57BL/6 mice in a controlled low-humidity environment combined with scopolamine injections. Mice received eye drops containing phosphate-buffered saline, low-dose BCA, or high-dose BCA. The effectiveness was evaluated by measuring tear volume, fluorescein staining, eye-closing ratio, corneal sensitivity and PAS staining. The levels of inflammatory components in corneas and conjunctiva were measured to assess DED severity. Maturation of antigen-presenting cells in cervical lymph nodes was analyzed by flow cytometry. BCA eye drops effectively reduced inflammation associated with DED in mice. BCA also decreased oxidative stress levels by reducing reactive oxygen species and enhancing the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2). These findings demonstrate that BCA ameliorates oxidative stress and ocular surface inflammation, indicating potential as a DED treatment by relieving oxidative damage and mitigating inflammation.


Asunto(s)
Síndromes de Ojo Seco , Genisteína , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/patología , Genisteína/farmacología , Genisteína/uso terapéutico , Femenino , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Soluciones Oftálmicas/farmacología , Supervivencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/patología
3.
Chemosphere ; 325: 138361, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907491

RESUMEN

Ozone microbubbles have received increasing attention since they can produce hydroxyl radical (•OH) to decompose ozone-resistant pollutants. Besides, compared with conventional bubbles, microbubbles have a larger specific surface area and higher mass transfer efficiency. However, the research on the micro-interface reaction mechanism of ozone microbubbles is still relatively scarce. Herein, we systematically studied the stability of microbubbles, ozone mass transfer and atrazine (ATZ) degradation through multifactor analysis. The results revealed that bubble size was dominant in the stability of microbubbles, and gas flow rate played a major role in ozone mass transfer and degradation effects. Besides, the bubble stability accounted for the different effects of pH on ozone mass transfer in two aeration systems. Finally, kinetic models were built and employed to simulate the kinetics of ATZ degradation by •OH. The results revealed that conventional bubbles could produce •OH faster compared with microbubbles under alkaline conditions. These findings shed light on the interfacial reaction mechanisms of ozone microbubbles.


Asunto(s)
Atrazina , Ozono , Contaminantes Químicos del Agua , Radical Hidroxilo , Atrazina/análisis , Microburbujas , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción
4.
Water Res ; 210: 118004, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973544

RESUMEN

Preoxidation-ultrafiltration process is an effective method for Fe2+ and Mn2+removal, in which Fe2+ (Mn2+) are firstly oxidized to FeOx (MnOx), then collected by the ultrafiltration membrane. However, the simultaneous presence of Fe2+, Mn2+, and organics in feed can cause severe membrane fouling, which inhibits the overall performance of this method prominently. In this study, a novel FeOx+MnOx+H2O2 membrane cleaning method is proposed based on the idea of turning in-situ generated membrane foulants, i.e., FeOx+MnOx, into the catalysts for membrane cleaning. The results demonstrate that the FeOx+MnOx+H2O2 system can achieve more than 95% membrane flux recovery and remove almost all irreversible membrane foulants within only 5 min and with only 0.5%wt% H2O2 solution. The outstanding performance of the system is mainly attributed to the catalytic decomposition of H2O2 to generate both highly reactive radicals, such as hydroxyl radicals (·OH), and abundant oxygen. In addition, when the membrane is loaded by only MnOx, polyaluminium chloride (PAC) as the coagulator demonstrates prominent influence on the performance of membrane cleaning. However, PAC makes almost no contribution to membrane cleaning when the membrane is loaded by FeOx. This is because coagulation induced by PAC exerts more prominent impact on the particle size distribution of MnOx than that of FeOx. In conclusion, the catalytic decomposition of H2O2 by in-situ generated FeOx+MnOx is a promising advanced oxidation process to achieve outstanding membrane cleaning performance under the condition of low H2O2 concentration and no extra dosage of catalysts. The novel membrane cleaning system exhibits high potential for the practical membrane treatment processes to treat water with high contents of Fe and Mn.


Asunto(s)
Peróxido de Hidrógeno , Purificación del Agua , Catálisis , Membranas Artificiales , Ultrafiltración
5.
Water Res ; 220: 118716, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35687974

RESUMEN

Membrane flux recovery efficiency and durability are two key factors closely associated with the practical application for membrane cleaning process. However, conventional chemical membrane cleaning method by soaking the whole membrane module in highly concentrated chemical reagents has prominent drawbacks including the low mass transfer efficiency of reagents, long period of washing time, and the potential threat to membrane structure. Herein, for the first time, we report a facile approach to fabricate the sodium percarbonate-MnO2 effervescent tablets which show bubbling reaction to release oxygen and free radicals when being dispersed in water for membrane cleaning. Due to the synergistic effect of MnO2 and sodium percarbonate, the tablets are highly effective to clean the membrane fouled by humic acid within 5 min, with the terminal membrane flux being recovered from 0.50 to 0.95, and the irreversible fouling resistance being reduced by more than 90%, which is prominently more efficient than the conventional chemical cleaning methods. Moreover, even by consecutive membrane fouling and cleaning for 6 times, the membrane flux and filtration efficiency of the membrane could still be kept almost constant, and the moderateness of this membrane cleaning method was also verified by the systematic microscopic analysis. For mechanism study, results of Electron Spin Resonance (ESR) and quenching experiments indicated that the high-efficiency and robust durability of sodium percarbonate-MnO2 (SPC-MnO2) system for membrane cleaning was mainly attributed to the abundantly generated hydroxyl radicals and secondary free radicals (i.e. carbonate radicals). Conclusively, compared with the conventional membrane cleaning method with liquid cleaning reagents, the novel SPC-MnO2 system with remarkable advantages in terms of convenience and membrane cleaning performance demonstrated high potential for the wide application in practice.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Carbonatos , Compuestos de Manganeso , Óxidos , Comprimidos , Purificación del Agua/métodos
6.
Water Res ; 183: 116006, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32585389

RESUMEN

Understanding the influences of cations on membrane fouling was important to improve the performance of membrane filtration system, however, opposite conclusions were made in different studies. Meanwhile, although the influences of cation concentration have been studied extensively, few attentions have been paid to the cation valence. To clarify it, the effects of typical cations on membrane fouling and cleaning, as well as the related mechanisms were investigated systemically in this study. K+ and Ca2+ were chosen as the representative cations, and humic acid (HA) was chosen as the membrane foulants. The results demonstrated Ca2+ promoted the formation of reversible fouling, meanwhile higher removal efficiency of HA could also be achieved with the assistance of filtration cake containing HA + Ca2+. However, K+ led to the formation of more recalcitrant irreversible fouling. By comparing the concentration of cations in feed and permeate, analyzing the influence of cations on size of HA flocs, and the detailed SEM, AFM and TEM observation, it could be found that different mechanisms dominated the interaction between cations and HA. The bridging effect induced by Ca2+ attributed to the extension of HA molecules, while the electrostatic shielding effect induced by K+ led to the compression of them. Moreover, the different characteristics of hydrated Ca2+ and K+ also contributed to the different structures of foulant layers formed by HA + Ca2+ and HA + K+. Given the abundance of K+ and Ca2+ in natural water, results of this study can provide valuable advice for practical membrane filtration process.


Asunto(s)
Ultrafiltración , Purificación del Agua , Filtración , Sustancias Húmicas , Membranas Artificiales
7.
Environ Pollut ; 264: 114686, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32422517

RESUMEN

Hexavalent chromium, Cr(VI), is a heavy metal contaminant and the reduction of Cr(VI) is accompanied by large isotopic fractionation. In this study, the sources of Cr were explored using the Cr isotopic composition of sediments from the Xiaoqing River, a heavily polluted river located in the Shandong Province of China, which flows into Laizhou Bay. The results show that δ53Cr values of the sediments are the highest upstream near the pollution source, and gradually decrease along the river toward the range for igneous reservoirs observed near the estuary. Based on the calculation of authigenic Cr isotopic composition (δ53Crauth) using the detrital index and leaching experiments, we suggest that the authigenic Cr in the sample near the pollution source with the highest δ53Crauth value mainly comes from the reduction of Cr(VI) discharged by anthropogenic activity, and authigenic Cr in other samples in the midstream with δ53Crauth values slightly higher than the range of igneous reservoirs may come from natural oxidative Cr weathering products. By introducing a Rayleigh model, we calculate that at least 31%-55% of Cr(VI) in the river water had been reduced to Cr(III) near the pollution source. Due to the self-purification ability of the river, Cr(VI) was reduced; thus, there is no record of high δ53Crauth values in the downstream of the Xiaoqing River and Laizhou Bay, indicating no obvious Cr pollution in these locations. The limited variation of δ53Cr values for samples from a sediment core in Laizhou Bay is also indicative of no obvious Cr pollution in the history. The Cr isotopic compositions of the river sediments are useful for the identification of Cr sources and can be used to advise environmental remediation on Cr pollution.


Asunto(s)
Bahías , Contaminantes Químicos del Agua/análisis , China , Cromo/análisis , Monitoreo del Ambiente , Sedimentos Geológicos , Isótopos
8.
Water Res ; 167: 115111, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31574347

RESUMEN

The novel H2O2-MnO2 system was developed to achieve highly efficient membrane cleaning for both fouled PVDF and PES membranes in this study. Compared with conventional chemical cleaning process in which the whole membrane module had to be soaked in highly concentrated solution of chemical reagent for long period of time, the H2O2-MnO2 cleaning process conducting for only 5 min in 0.5 wt% H2O2 solution could achieve more than 95% recovery of permeate flux and almost total removal of the irreversible foulants. More importantly, the permeate flux and filtration efficiency of the membrane could be still kept stable after 6 runs of consecutive fouling and cleaning. Based on the systematic microscopic analyses, Electron Spin Resonance (ESR), Fourier Transform Infrared Spectroscopy (FTIR), as well as the quenching experiments with different free radical scavengers, the outstanding performance of H2O2-MnO2 system was attributed to the generation of both free radicals and abundant oxygen simultaneously, leading to the physico-chemical membrane cleaning. Conclusively, the newly developed H2O2-MnO2 system demonstrated noteworthy advantages on efficient membrane cleaning, and exhibited highly potential for the wide application in practical water treatment process.


Asunto(s)
Ultrafiltración , Purificación del Agua , Peróxido de Hidrógeno , Compuestos de Manganeso , Membranas Artificiales , Óxidos , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA