Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Trends Genet ; 40(3): 260-275, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38296708

RESUMEN

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) possess low sequence complexity of amino acids and display non-globular tertiary structures. They can act as scaffolds, form regulatory hubs, or trigger biomolecular condensation to control diverse aspects of biology. Emerging evidence has recently implicated critical roles of IDPs and IDR-contained proteins in nuclear transcription and cytoplasmic post-transcriptional processes, among other molecular functions. We here summarize the concepts and organizing principles of IDPs. We then illustrate recent progress in understanding the roles of key IDPs in machineries that regulate transcriptional and post-transcriptional gene silencing (PTGS) in plants, aiming at highlighting new modes of action of IDPs in controlling biological processes.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Plantas/genética , Plantas/metabolismo , Silenciador del Gen , Conformación Proteica
2.
Phys Rev Lett ; 132(11): 110402, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563915

RESUMEN

Certain non-Hermitian systems exhibit the skin effect, whereby the wave functions become exponentially localized at one edge of the system. Such exponential amplification of wavefunction has received significant attention due to its potential applications in, e.g., classical and quantum sensing. However, the opposite edge of the system, featured by exponentially suppressed wave functions, remains largely unexplored. Leveraging this phenomenon, we introduce a non-Hermitian cooling mechanism, which is fundamentally distinct from traditional refrigeration or laser cooling techniques. Notably, non-Hermiticity will not amplify thermal excitations, but rather redistribute them. Hence, thermal excitations can be cooled down at one edge of the system, and the cooling effect can be exponentially enhanced by the number of auxiliary modes, albeit with a lower bound that depends on the dissipative interaction with the environment. Non-Hermitian cooling does not rely on intricate properties such as exceptional points or nontrivial topology, and it can apply to a wide range of excitations.

3.
Soft Matter ; 20(16): 3401-3410, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563244

RESUMEN

Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.


Asunto(s)
Biopelículas , Estrés Mecánico , Anisotropía , Modelos Biológicos
4.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326903

RESUMEN

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Asunto(s)
Osteogénesis , Fosfatidilinositol 3-Quinasas , Ratas , Animales , Nanogeles , Huesos/diagnóstico por imagen , Hidrogeles/farmacología
5.
Ecotoxicol Environ Saf ; 271: 115958, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219618

RESUMEN

In this paper, the Cu and Ni accumulation and contamination levels in agricultural soils and wheat around a smelter in Jinchang City in northwest China were investigated with a combination of field investigations and indoor analytical tests, using a soil-wheat system as the study area. The average Cu and Ni contents in the soil were 119.50 mg kg-1 and 123.40 mg kg-1, respectively, both of which exceeded the local soil background values. The Cu and Ni contents in 46.15% o and 26.92% of sampling sites, respectively, exceeded the screening values for soil contamination risk in agricultural land in China. The average Cu content in different parts of wheat was in the order of roots (24.22 mg kg-1) > leaves (20.11 mg kg-1) > husks (5.51 mg kg-1) > grains (4.05 mg kg-1) > stalks (3.74 mg kg-1). Furthermore, the average Ni content ranked as leaves (24.64 mg kg-1) > roots (21.12 mg kg-1) > husks (6.95 mg kg-1) > stalks (1.75 mg kg-1) > grains (0.38 mg kg-1). The health risk evaluation showed that with average hazard index values of 0.88 for adults and 1.04 for children for Cu and Ni in wheat grain, wheat in this region is unlikely to pose a health risk to adults but may pose a lesser health risk to children. The Ni bio-concentration and translocation factors in the husk and leaves of wheat were greater than those of Cu and smaller than those of Cu in the other parts of wheat. The results of this study provide basic data for the remediation of heavy metal contamination in local agricultural soils.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Suelo , Triticum , Metales Pesados/análisis , Agricultura , China , Medición de Riesgo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
6.
Medicine (Baltimore) ; 103(30): e39040, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058805

RESUMEN

Orbital fat is an adipose tissue located behind orbital septum and originates from mesoderm and neural crest in ectoderm. It has been found that the histologic structure of orbital fat is different from subcutaneous and visceral fat. In addition, the regeneration and anti-inflammatory ability of stem cells derived from orbital fat have attracted much attention in recent years. This paper reviews the recent research progress on orbital fat, including its structure, origin, histological characteristics, and related stem cells.


Asunto(s)
Tejido Adiposo , Órbita , Humanos , Tejido Adiposo/citología , Órbita/anatomía & histología , Células Madre , Citología
7.
Biol Trace Elem Res ; 202(10): 4586-4595, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38100013

RESUMEN

Due to rapid urbanization and industrialization, Cadmium (Cd) contamination is widespread. Meanwhile, the prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing. Cd is linked to bone damage. However, the osteotoxicity of environmental Cd exposure in NAFLD remains unclear. Therefore, this study aimed to investigate the effects and potential mechanisms of Cd on bone metabolism in NAFLD mice. NAFLD mice were treated with 50 mg/L cadmium chloride in drinking water for 12 weeks. Bone microstructures were scanned by Micro-CT. Liver lipid droplets and fibrosis were measured by histopathological staining. Insulin tolerance tests were performed in mice. RT-PCR and Western blot were performed to analyse hepatic inflammation factors. Results show no damage in healthy mice exposed to Cd. However, Cd exacerbated liver fibrosis and significantly reduced cancellous bone mineral density and decreased the number and thickness of trabecular bone in NAFLD mice. Additionally, the morphology of trabecular bone transformed from a plate structure to a rod structure in NAFLD mice after Cd exposure. The underlying mechanism appears to be related to the Cd-induced direct or indirect toxicity. Exacerbated liver fibrosis, increased inflammatory factors (TGF-ß and IL-1ß), and reduced lecithin-cholesterol acyltransferase (LCAT) and insulin-like growth factor-1 (IGF-1) might contribute to bone damages. Collectively, our study illustrates that despite lower dosing Cd exposure did not induce bone damages in healthy mice, Cd caused bone loss in NAFLD mice. Therefore, it is recommended that individuals with metabolic disorders should avoid working in Cd pollution environment and consuming cadmium-contaminated food and water.


Asunto(s)
Cadmio , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Cadmio/toxicidad , Masculino , Exposición a Riesgos Ambientales/efectos adversos , Ratones Endogámicos C57BL
8.
Metallomics ; 16(5)2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38658185

RESUMEN

This study reports the toxicity of Pb exposure on systemic inflammation in high-fat-diet (HFD) mice and the potential mechanisms. Results indicated that Pb exacerbated intestinal barrier damage and increased serum levels of lipopolysaccharide (LPS) and diamine oxidase in HFD mice. Elevated LPS activates the colonic and ileal LPS-TLR4 inflammatory signaling pathway and further induces hepatic and adipose inflammatory expression. The 16S rRNA gene sequencing results showed that Pb promoted the abundance of potentially harmful and LPS-producing bacteria such as Coriobacteriaceae_UCG-002, Alloprevotella, and Oscillibacter in the intestines of HFD mice, and their abundance was positively correlated with LPS levels. Additionally, Pb inhibited the abundance of the beneficial bacteria Akkermansia, resulting in lower levels of the metabolite short-chain fatty acids (SCFAs). Meanwhile, Pb inhibited adenosine 5'-monophosphate-activated protein kinase signaling-mediated lipid metabolism pathways, promoting hepatic lipid accumulation. The above results suggest that Pb exacerbates systemic inflammation and lipid disorders in HFD mice by altering the gut microbiota, intestinal barrier, and the mediation of metabolites LPS and SCFAs. Our study provides potential novel mechanisms of human health related to Pb-induced metabolic damage and offers new evidence for a comprehensive assessment of Pb risk.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Inflamación , Plomo , Lipopolisacáridos , Ratones Endogámicos C57BL , Transducción de Señal , Receptor Toll-Like 4 , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Masculino , Inflamación/metabolismo , Inflamación/patología , Inflamación/inducido químicamente , Plomo/toxicidad , Plomo/metabolismo , Transducción de Señal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos
9.
Genome Biol ; 25(1): 54, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388963

RESUMEN

BACKGROUND: RNA secondary structure (RSS) can influence the regulation of transcription, RNA processing, and protein synthesis, among other processes. 3' untranslated regions (3' UTRs) of mRNA also hold the key for many aspects of gene regulation. However, there are often contradictory results regarding the roles of RSS in 3' UTRs in gene expression in different organisms and/or contexts. RESULTS: Here, we incidentally observe that the primary substrate of miR159a (pri-miR159a), when embedded in a 3' UTR, could promote mRNA accumulation. The enhanced expression is attributed to the earlier polyadenylation of the transcript within the hybrid pri-miR159a-3' UTR and, resultantly, a poorly structured 3' UTR. RNA decay assays indicate that poorly structured 3' UTRs could promote mRNA stability, whereas highly structured 3' UTRs destabilize mRNA in vivo. Genome-wide DMS-MaPseq also reveals the prevailing inverse relationship between 3' UTRs' RSS and transcript accumulation in the transcriptomes of Arabidopsis, rice, and even human. Mechanistically, transcripts with highly structured 3' UTRs are preferentially degraded by 3'-5' exoribonuclease SOV and 5'-3' exoribonuclease XRN4, leading to decreased expression in Arabidopsis. Finally, we engineer different structured 3' UTRs to an endogenous FT gene and alter the FT-regulated flowering time in Arabidopsis. CONCLUSIONS: We conclude that highly structured 3' UTRs typically cause reduced accumulation of the harbored transcripts in Arabidopsis. This pattern extends to rice and even mammals. Furthermore, our study provides a new strategy of engineering the 3' UTRs' RSS to modify plant traits in agricultural production and mRNA stability in biotechnology.


Asunto(s)
Arabidopsis , Exorribonucleasas , Animales , Humanos , Regiones no Traducidas 3' , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica , Mamíferos/genética
10.
Bioact Mater ; 34: 381-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38269309

RESUMEN

Preventing local tumor recurrence while promoting bone tissue regeneration is an urgent need for osteosarcoma treatment. However, the therapeutic efficacy of traditional photosensitizers is limited, and they lack the ability to regenerate bone. Here, a piezo-photo nanoheterostructure is developed based on ultrasmall bismuth/strontium titanate nanocubes (denoted as Bi/SrTiO3), which achieve piezoelectric field-driven fast charge separation coupling with surface plasmon resonance to efficiently generate reactive oxygen species. These hybrid nanotherapeutics are integrated into injectable biopolymer hydrogels, which exhibit outstanding anticancer effects under the combined irradiation of NIR and ultrasound. In vivo studies using patient-derived xenograft models and tibial osteosarcoma models demonstrate that the hydrogels achieve tumor suppression with efficacy rates of 98.6 % and 67.6 % in the respective models. Furthermore, the hydrogel had good filling and retention capabilities in the bone defect region, which exerted bone repair therapeutic efficacy by polarizing and conveying electrical stimuli to the cells under mild ultrasound radiation. This study provides a comprehensive and clinically feasible strategy for the overall treatment and tissue regeneration of osteosarcoma.

11.
Toxicol Res ; 40(3): 431-440, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38911548

RESUMEN

The Internet Data Center (IDC) is one of the most important infrastructures in the field of information technology. The cooling system for heat dissipation of IDC is indispensable due to it generates a large amount of heat during its calculation process, which may potentially harm its normal operation. Electronic fluorinated fluids have been widely used in cooling systems of IDC with stable physical and chemical properties. However, the biological toxicity of electronic fluorinated fluids has not been fully evaluated and there is a lack of unified safety standards, which may pose potential risks to the environment and human health. Here, hexafluoropropylene terpolymer (HFPT) as an example has been systematically studied, fully considering the application scenarios of data centers. Also, the emergency effects of fluorinated coolants in mammalian models from the perspectives of inhalation, skin contact, accidental entry into eyes, accidental ingestion, and chronic toxicity, are evaluated. Multiple in vivo experiments have proven that HFPT not only has stable physical and chemical properties, that can maintain the safe operation of IDC, but also has low physiological toxicity to mammals and can provide health benefits to data center staff and the assurance of surrounding environment. This study proves the good biological safety of electronic fluorinated fluids and provides a reference for environmental assessment and risk management of liquid cooling technology in IDC. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-024-00234-3.

12.
Nat Plants ; 10(7): 1126-1143, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38918606

RESUMEN

MicroRNAs (miRNAs) are produced from highly structured primary transcripts (pri-miRNAs) and regulate numerous biological processes in eukaryotes. Due to the extreme heterogeneity of these structures, the initial processing sites of plant pri-miRNAs and the structural rules that determine their processing have been predicted for many miRNAs but remain elusive for others. Here we used semi-active DCL1 mutants and advanced degradome-sequencing strategies to accurately identify the initial processing sites for 147 of 326 previously annotated Arabidopsis miRNAs and to illustrate their associated pri-miRNA cleavage patterns. Elucidating the in vivo RNA secondary structures of 73 pri-miRNAs revealed that about 95% of them differ from in silico predictions, and that the revised structures offer clearer interpretation of the processing sites and patterns. Finally, DCL1 partners Serrate and HYL1 could synergistically and independently impact processing patterns and in vivo RNA secondary structures of pri-miRNAs. Together, our work sheds light on the precise processing mechanisms of plant pri-miRNAs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , ARN de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica de las Plantas
13.
Sci Adv ; 10(22): eadm6761, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809986

RESUMEN

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.

14.
Nat Phys ; 19(12): 1936-1944, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39055904

RESUMEN

Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA