Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(38): 15432-15439, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37682796

RESUMEN

Utilizing artificial photosynthesis for the conversion of CO2 into value-added fuels has been recognized as a promising strategy for the ever-increasing energy crisis and the greenhouse effect. Herein, the element doping engineering of red spherical g-C3N4 having oxygen bonded with compositional carbon (C-O-C) for CO2 photoreduction has been explored to address this challenge. The C-O bond was formed by hydrothermal treatment with dicyandiamide and 1,3,5-trichlorotriazine. The experimental and DFT results displayed the optimum oxygen substitution sites and demonstrated that the oxygen doping greatly improved the light utilization efficiency, CO2 affinity, and charge carrier transfer, which enhanced photoreduction efficiency of CO2. The evolution rates of CO (47.2 µmol g-1) and CH4 (9.1 µmol g-1) using O-CN were much higher than that of bulk-CN without a cocatalyst. The main reason was the contribution of the O 2p orbital to the conduction band (CB) and valence band of O-CN, which effectively reduced the electron mass, facilitating electron/hole separation and enhancing its fluidity. Furthermore, the Fermi level also shifted to the bottom of the CB, leading to higher electron density, which further improved the CO2 reduction ability. Our study marks an important step for developing high-performance photocatalysts for reduction of CO2.

2.
Environ Res ; 216(Pt 4): 114747, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36372151

RESUMEN

Chinese medicinal herbal residues (CMHRs) are known for their antipathogenic properties due to the presence of bioactive compounds. Hence, CMHRs could be used as a potential resource to produce biofertilizer with antipathogenic properties for agricultural applications. In this study, a novel approach was used by utilizing the waste-derived biofertilizer, i.e., CMHRs compost (CMHRC) as a nutrient supplier as well as an organic bioagent against Alternaria solani (A. solani) and Fusarium oxysporum (F. oxysporum) on tomato (Lycopersicon esculentum) and Chinese cabbage (Brassica rapa subsp. Chinensis) plants. The experiments were conducted under greenhouse conditions using locally collected acidic soil wherein 2%, 5% and 10% CMHRC (dry weight) along with 5% food waste compost were used as treatments. In addition, only soil and soil with phytopathogens were used as control treatments. The results suggested that amending the compost into acidic soil significantly increased the pH to a neutral level along with enhanced uptake of nutrients. Among all the treatments, 5% CMHRs compost addition increased the tomato plant biomass production to 4.9 g/pot (dry weight) compared to 2.2 g/pot in control. A similar trend was observed in Chinese cabbage plants and the improved plant biomass production could be attributed to the combined effect of strong nutrient absorption ability by healthy roots and enhanced nutrient supply. At 5% CMHRC application rate, the nitrogen uptake by tomato and Chinese cabbage plants increased by 78% and 62%, respectively, whereas phosphorous uptake increased by 75% and 25%, respectively. The reduction in A. solani by 48% and F. oxysporum by 54% in the post-harvested soil of 5% CMHRC treatment against the control demonstrated the anti-phytopathogenic efficiency of CMHRC compost. Hence, the present study illustrates the beneficiary aspects of utilizing CMHRs to produce biofertilizer with anti-phytopathogenic properties which can be safely used for tomato and Chinese cabbage plant growth.


Asunto(s)
Brassica , Compostaje , Eliminación de Residuos , Solanum lycopersicum , Alimentos , Suelo , Plantas , Nutrientes , China
3.
Int J Mol Sci ; 24(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37239937

RESUMEN

The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Animales , Humanos , Agregado de Proteínas , Proteostasis , Deficiencias en la Proteostasis/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175493

RESUMEN

Transcription factors can affect autophagy activity by promoting or inhibiting the expression of autophagic and lysosomal genes. As a member of the zinc finger family DNA-binding proteins, ZKSCAN3 has been reported to function as a transcriptional repressor of autophagy, silencing of which can induce autophagy and promote lysosomal biogenesis in cancer cells. However, studies in Zkscan3 knockout mice showed that the deficiency of ZKSCAN3 did not induce autophagy or increase lysosomal biogenesis. In order to further explore the role of ZKSCAN3 in the transcriptional regulation of autophagic genes in human cancer and non-cancer cells, we generated ZKSCAN3 knockout HK-2 (non-cancer) and Hela (cancer) cells via the CRISPR/Cas9 system and analyzed the differences in gene expression between ZKSCAN3 deleted cells and non-deleted cells through fluorescence quantitative PCR, western blot and transcriptome sequencing, with special attention to the differences in expression of autophagic and lysosomal genes. We found that ZKSCAN3 may be a cancer-related gene involved in cancer progression, but not an essential transcriptional repressor of autophagic or lysosomal genes, as the lacking of ZKSCAN3 cannot significantly promote the expression of autophagic and lysosomal genes.


Asunto(s)
Autofagia , Regulación de la Expresión Génica , Animales , Ratones , Humanos , Autofagia/genética , Células HeLa , Lisosomas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Biochem Biophys Res Commun ; 608: 73-81, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35395550

RESUMEN

Aberrant lipid metabolism is a hallmark of malignant cancers. Recent studies have shown that abnormal activation of the lipolysis pathway might contribute to acute myeloid leukemia (AML) progression. However, the molecular mechanism through which lipid metabolism mediates AML progression is unknown. RNA-sequencing was used to screen out the target gene pnpla2/ATGL(adipose triglyceride lipase), which showed differential expression in AML. A comparison was made of ATGL mRNA levels in different AML cell lines by real-time PCR. ATGL expression was blocked using siRNAs, and then ATGL expression, proliferation, apoptosis, and cell cycle progression of si-ATGL AML cell lines and si-control AML cell lines were respectively tested. Online tools were used to analyze the potential target microRNAs of ATGL. The mechanism through which hsa-miR-214-3p regulates ATGL was detected by western blotting, proliferation assays, flow cytometry, and dual-luciferase reporter assays. Our results showed that ATGL was overexpressed in AML cell lines. Moreover, ATGL promoted the growth of AML cells. Additionally, hsa-miR-214-3p could suppress ATGL. Finally, we show that hsa-miR-214-3p regulates ATGL through the hsa-miR-214-3p/ATGL/PPARα pathway. This study showed that hsa-miR-214-3p-regulates aberrant lipolysis by promoting ATGL expression, which causes AML progression through the PPARα pathway.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , PPAR alfa , Aciltransferasas/genética , Aciltransferasas/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Lipólisis/genética , MicroARNs/genética , MicroARNs/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo
6.
Environ Res ; 205: 112537, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34906588

RESUMEN

Hydrothermal treatment (HT) is a pragmatic approach for pretreatment of kitchen waste (KW). This work investigated the effect of hydrothermal pretreatment (HTP) on the deoiling, desalting and liquid substances transformation of KW. The orthogonal test method was used to study the effects of three factors at five levels, including solid to liquid ratio (A1-5), heating time (B1-5) and hydrothermal temperature (C1-5). The results indicated that the floatable oil content was improved significantly after HTP. The highest floatable oil content was 84.54 mL/kg at the hydrothermal condition of 1/1.5, 20 min and 100 °C, which was 2.42 times higher than the control. The maximum desalination ratio (92.66%) was at A5B1C5 (1/2.5, 5 min, 100 °C), which was 4.48 times higher than control group (No.0) (20.67%). The VFAs concentration was the highest (11441.05 mg/kg) at 1/2.5, 5 min and 100 °C, which increased by 711.03% compared to the No.0 (1410.78 mg/kg). In addition, the maximum TOC value was obtained at 53530.84 mg/kg. After HTP, the acetic acid and butyric acid concentrations of the liquid phase increased, while the ethanol concentration decreased. The contents of T,NH4+-N and organic nitrogen in the liquid phase of the HTP system increased, while NO3--N remained at a low level (4.96-20.48 mg/kg). The range and variance analysis showed that the temperature had the greatest effect on the deoiling and the liquid substances transformation of KW among these three factors, followed by solid to liquid ratio and heating time. Based on the orthogonal experiment, the optimal parameters for KW deoiling were A3 (1/1.5), B4 (25 min) and C5 (100 °C). This work provided a reference for the KW deoiling and hence improve the efficient utilization of KW.


Asunto(s)
Temperatura
7.
Molecules ; 27(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408755

RESUMEN

Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.


Asunto(s)
Enfermedades Renales , Neoplasias , Proteínas de Choque Térmico/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Chaperonas Moleculares/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
8.
Environ Res ; 197: 111093, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33812872

RESUMEN

Understanding the interactions between magnetic particles (MPs) and polyaluminum chloride (PACl) is essential to elucidate the magnetic seeding coagulation (MSC) process. However, little is known about how MPs interact with the different Al species coexisting in the PACl. Here, the relationships among pollutants removal, residual Al distribution, and floc properties were comparatively studied in the MSC and traditional coagulation (TC) processes to address this issue. The response surface analysis indicated that the interaction between PACl and MPs dosages exhibited significant effects on turbidity and DOC removal. Negligible changes of dissolved Al after MPs addition indicated the weak connection between Ala and MPs. The formation of MPs-Alb-HA complexes resulted in the increase of turbidity removal from 90.2% to 96.0% and the reduction of colloidal Al from 0.67 to 0.30 mg L-1. Humic-like components could be adsorbed on MPs forming MPs-HA complexes, which enhanced the DOC removal from 55% to 58.5%. MPs addition produced loose flocs with a small floc fractal dimension value (1.74), so the average size and strength of flocs in the MSC process (425 µm and 49.7%) were lower than that in the TC process (464 µm and 58.3%). The cumulative volume percentage of large flocs (>700 µm) was decreased from 29.7% to 20.7% with MPs addition, indicating the disruption of large flocs and the reproduction of more fragments. The effective separation of these fragments by magnetic attraction maintained the efficient coagulation performance. This study provides new insights into the interaction mechanism of MPs and PACl in the MSC process.


Asunto(s)
Sustancias Húmicas , Purificación del Agua , Hidróxido de Aluminio , Floculación , Sustancias Húmicas/análisis , Caolín , Fenómenos Magnéticos
9.
BMC Musculoskelet Disord ; 22(1): 984, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34823490

RESUMEN

BACKGROUND: The irregular anatomical shape and complex structures of irregular bones make it more difficult to repair and reconstruct bone defects in irregular bones than in the long bones of the extremities. Three-dimensional (3D) printing technology can help to overcome the technical limitations of irregular bone repair by generating simulations that enable structural integration of the lesion area and bone structure of the donor site in all directions and at multiple angles. Thus, personalized and accurate treatment plans for restoring anatomical structure, muscle attachment points, and maximal function can be made. The present study aimed to investigate the ability of 3D printing technology to assist in the repair and reconstruction of scapular aneurysmal ABC defects. METHODS: The study included seven patients with ABCs of the scapula. Based on computed tomography (CT) data for the patient, the scapula (including the defect) and pelvis were reconstructed using Mimics Medical software. The reconstructed scapula model was printed using a 3D printer. Before the operation, the model was used to design the surgical approach and simulate the operation process, to determine the length and radius of the plate and the number and direction of screws, and to determine the bone mass of the ilium and develop reasonable strategies for segmentation and distribution. The operation time, amount of bleeding, length and radius of the plate, and direction and number of screws were recorded. RESULTS: The average duration of follow-up was 25.6 months, and none of the seven patients experienced recurrence during the follow-up period. The surgical approach, the length and radius of internal fixation, and the number and direction of screws were consistent with the designed operation plan. Patients gradually recovered the anatomical structure of the scapula and function of the shoulder joint. CONCLUSIONS: In the treatment of bone defects caused by irregular bone tumors, 3D printing technology combined with surgery has the advantages of less trauma, short operation time, less bleeding and reducing the difficulty of operation, which can reduce the waste of bone graft, and more complete reconstruction of the anatomical structure of the defective bone.


Asunto(s)
Quistes Óseos Aneurismáticos , Quistes Óseos Aneurismáticos/diagnóstico por imagen , Quistes Óseos Aneurismáticos/cirugía , Placas Óseas , Fijación Interna de Fracturas , Humanos , Impresión Tridimensional , Escápula/diagnóstico por imagen , Escápula/cirugía
10.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884626

RESUMEN

Root-derived mobile signals play critical roles in coordinating a shoot's response to underground conditions. However, the identification of root-to-shoot long-distance mobile signals has been scant. In this study, we aimed to characterize root-to-shoot endogenous mobile miRNAs by using an Arabidopsis/Nicotiana interfamilial heterograft in which these two taxonomically distant species with clear genetic backgrounds had sufficient diversity in differentiating miRNA sources. Small RNA deep sequencing analysis revealed that 82 miRNAs from the Arabidopsis scion could travel through the graft union to reach the rootstock, whereas only a very small subset of miRNA (6 miRNAs) preferred the root-to-shoot movement. We demonstrated in an ex vivo RNA imaging experiment that the root-to-shoot mobile Nb-miR164, Nb-miR395 and Nb-miR397 were targeted to plasmodesmata using the bacteriophage coat protein MS2 system. Furthermore, the Nb-miR164 was shown to move from the roots to the shoots to induce phenotypic changes when its overexpressing line was used as rootstock, strongly supporting that root-derived Nb-miR164 was able to modify the scion trait via its long-distance movement.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Nicotiana/genética , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo
11.
Arthroscopy ; 33(2): 297-304, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28034486

RESUMEN

PURPOSE: To biomechanically compare the stability between open repair and arthroscopic transosseous repair technique for reattachment of the foveal triangular fibrocartilage complex (TFCC). We also evaluated the feasibility of a new aiming device for the creation of 2 bone tunnels simultaneously during the arthroscopic technique. METHODS: Six matched pairs of fresh-frozen forearm cadaver specimens were prepared for testing. Group I specimens were treated by open repair with suture anchor. Group II specimens were treated by arthroscopic transosseous suture with a new aiming device. Before and after disruption of the TFCC fovea and after its repair, dorsal and palmar translation of the ulna was measured in both groups in response to a load (3 kg) applied in the palmar and then in the dorsal direction. The total translation of the ulna was calculated as the sum of the mean dorsal and palmar translations. RESULTS: The mean total ulnar translation before and after TFCC disruption, and after TFCC repair was 5.94 ± 2.16 mm, 9.08 ± 2.64 mm, and 6.04 ± 2.18 mm, respectively. The specimens demonstrated a significant increase in the total translation of the ulna after disruption of the ulnar attachment of TFCC (P = .003), whereas a significant decrease was observed after TFCC foveal repair (P = .003). The median percentage of eliminated translation after TFCC repair was 64% and 172%, respectively, in groups I and II (P = .043). CONCLUSIONS: The athroscopic transosseous suture technique demonstrated superior repair efficacy to the open repair technique in terms of biomechanical strength. This cadaveric study also demonstrated the feasibility of a new aiming device. CLINICAL RELEVANCE: When making decisions about TFCC foveal repair, arthroscopic transosseous suture technique may provide better biomechanical strength than the open repair technique.


Asunto(s)
Artroscopía , Inestabilidad de la Articulación/cirugía , Fibrocartílago Triangular/cirugía , Articulación de la Muñeca/cirugía , Anciano , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anclas para Sutura , Técnicas de Sutura
12.
Environ Sci Ecotechnol ; 21: 100411, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38746776

RESUMEN

Recent advancements in constructed wetlands (CWs) have highlighted the imperative of enhancing nitrogen (N) removal efficiency. However, the variability in influent substrate concentrations presents a challenge in optimizing N removal strategies due to its impact on removal efficiency and mechanisms. Here we show the interplay between influent substrate concentration and N removal processes within integrated vertical-flow constructed wetlands (IVFCWs), using wastewaters enriched with NO3--N and NH4+-N at varying carbon to nitrogen (C/N) ratios (1, 3, and 6). In the NO3--N enriched systems, a positive correlation was observed between the C/N ratio and total nitrogen (TN) removal efficiency, which markedly increased from 13.46 ± 2.23% to 87.00 ± 2.37% as the C/N ratio escalated from 1 to 6. Conversely, in NH4+-N enriched systems, TN removal efficiencies in the A-6 setup (33.69 ± 4.83%) were marginally 1.25 to 1.29 times higher than those in A-3 and A-1 systems, attributed to constraints in dissolved oxygen (DO) levels and alkalinity. Microbial community analysis and metabolic pathway assessment revealed that anaerobic denitrification, microbial N assimilation, and dissimilatory nitrate reduction to ammonium (DNRA) predominated in NO3--N systems with higher C/N ratios (C/N ≥ 3). In contrast, aerobic denitrification and microbial N assimilation were the primary pathways in NH4+-N systems and low C/N NO3--N systems. A mass balance approach indicated denitrification and microbial N assimilation contributed 4.12-47.12% and 8.51-38.96% in NO3--N systems, respectively, and 0.55-17.35% and 7.83-33.55% in NH4+-N systems to TN removal. To enhance N removal, strategies for NO3--N dominated systems should address carbon source limitations and electron competition between denitrification and DNRA processes, while NH4+-N dominated systems require optimization of carbon utilization pathways, and ensuring adequate DO and alkalinity supply.

13.
ISA Trans ; 150: 30-43, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38811311

RESUMEN

This paper studies a multi-hydraulic system (MHS) synchronization control algorithm. Firstly, a general nonlinear asymmetric MHS state space entirety model is established and subsequently the model form is simplified by nonlinear feedback linearization. Secondly, an entirety model-type solution is proposed, integrating a nonlinear model predictive control (NMPC) algorithm with a cross-coupling control (CCC) algorithm. Furthermore, a novel disturbance compensator based on the system's inverse model is introduced to effectively handle disturbances, encompassing unmodeled errors and noise. The proposed innovative controller, known as nonlinear model predictive control-cross-coupling control with deep neural network feedforward (NMPC-CCC-DNNF), is designed to minimize synchronization errors and counteract the impact of disturbances. The stability of the control system is rigorously demonstrated. Finally, simulation results underscore the efficacy of the NMPC-CCC-DNNF controller, showcasing a remarkable 60.8% reduction in synchronization root mean square error (RMSE) compared to other controllers, reaching up to 91.1% in various simulations. These results affirm the superior control performance achieved by the NMPC-CCC-DNNF controller.

14.
Bioresour Technol ; 393: 130095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029804

RESUMEN

A pilot-scale carbon fibers enhanced ecological floating beds (CF-EFBs) was constructed. Compared to EFBs without carbon fibers enhancement, CF-EFBs have the better removal of total inorganic nitrogen (TIN), total phosphorus (TP), and chemical oxygen demand (COD), the removal efficiencies were 3.19, 3.49, and 2.74 times higher than EFBs. Throughout the pilot test (under three different coverage rates), the concentrations of COD, TIN and TP of effluent were 18.11 ± 4.52 mgL-1, 1.95 ± 0.92 mgL-1 and 0.13 ± 0.08 mgL-1. Meanwhile, the average removal of TIN, TP and COD from tailwater was 0.96 gm-2d-1, 0.07 gm-2d-1 and 2.37 gm-2d-1 respectively. When the coverage was 30 %, the CF-EFBs had better nitrogen removal effectiveness (TIN purification ability of 1.49 gm-2d-1). The enrichment of denitrifying bacteria, such as Aridibacter, Nitrospira, Povalibacter, and Phaeodactylibacter increased denitrification efficiency. These results verified the feasibility of CF-EFBs in tailwater treatment at pilot-scale, which was of great significance for the practical application of CF-EFBs.


Asunto(s)
Purificación del Agua , Fibra de Carbono , Nitrógeno , Fósforo , Desnitrificación , Carbono , Reactores Biológicos , Eliminación de Residuos Líquidos
15.
J Hazard Mater ; 460: 132389, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666169

RESUMEN

ZVI@C-MP is a novel composite particle consisting of zero-valent iron (ZVI) enclosed within a carbon shell. The purpose of this composite material is to enhance the anaerobic treatment of wastewater containing chloramphenicol (CAP). This approach aims to address the initial challenge of excessive corrosion experienced by ZVI, followed by its subsequent passivation and inactivation. ZVI@C-MP was synthesized through a hydrothermal process and calcination, with montmorillonite as binder, it exhibits stability, iron-carbon microelectrolysis (ICME) properties, and strong adsorption for CAP. Its ICME actions include releasing iron ions (0.70 mg/L) and COD (11.3 mg/L), generating hydrogen (3.82%), and raising the pH from 6.30 to 7.71. With minimal structural changes, it achieved release equilibrium. ZVI@C-MP boasts high removal efficiency of CAP (98.96%) by adsorption, attributed to surface characteristics (surface area: 167.985 m2/g; pore volume: 0.248 cm3/g). The addition of ZVI@C-MP increases COD removal (10.16%), methane production (72.86%), and reduces extracellular polymeric substances (EPS) from 70.58 to 52.72 mg/g MLVSS. It reduces microbial by-products and toxic effects, enhancing CAP biodegradation and microbial metabolic activity. ZVI@C-MP's electrical conductivity and biocompatibility bolster functional flora for interspecies electron transfer. It's a novel approach to antibiotic wastewater treatment.


Asunto(s)
Bentonita , Cloranfenicol , Aguas Residuales , Anaerobiosis , Antibacterianos , Carbono , Hierro
16.
Waste Manag ; 156: 44-54, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436407

RESUMEN

Anaerobic digestion is considered an environmentally benign process for the recycling of food waste into biogas. However, unscientific disposal of ammonium-rich food waste digestate (FWD), a by-product of anaerobic digestion induces environmental issues such as odor nuisances, water pollution, phytotoxicity and pathogen transformations in soil, etc. In the present study, FWD produced from anaerobic digestion of source-separated food waste from markets and industries was used for converting FWD into biofertilizer using 20-L bench scale composters. The issues of nitrogen loss, NH3 volatilization, and greenhouse gas N2O emission were addressed using in-situ composting technologies with the aid of tobacco and bamboo biochar produced at pyrolytic temperatures of 450 °C and 600 °C, respectively. The results demonstrated that the phytotoxic nature of FWD could be reduced into a nutrient-rich compost by mitigating nitrogen loss by 29-53% using 10% tobacco and 10% bamboo biochar in comparison with the control treatment. Tobacco biochar mitigates NH3 emission by 63% but enhances the N2O emission by 65%, whereas bamboo biochar mitigates both NH3 and N2O emissions by 48% and 31%, respectively. Overall, 10% tobacco and 10% bamboo biochar amendment could reduce total nitrogen loss by 29% and 53%, respectively. Furthermore, the biochar addition significantly enhanced the biodegradation rate of FWD and the mature compost could be produced within 21 days of FWD composting as seen by an increased seed germination index (>50% on dry weight basis). The results of this study could be beneficial in developing a circular bioeconomy locally with the waste-derived substrates.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Eliminación de Residuos , Sasa , Carbón Orgánico , Gases de Efecto Invernadero/análisis , Nitrógeno/análisis , Nicotiana , Estiércol , Alimentos , Suelo
17.
Environ Technol ; : 1-11, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36546563

RESUMEN

Food waste digestate (FWD) disposal is a serious bottleneck in anaerobic digestion plants to achieve a circular bioeconomy. FWD could be recycled into nitrogen-rich compost; however, the co-composting process optimisation along with bulking agents is required to reduce nitrogen loss and unwanted gaseous emissions. In the present study, two different-sized bulking agents, namely, wood shaving (WS) and fine sawdust (FS), were used to investigate their impact on FWD composting performance along with the nitrogen dynamics. The mixing of FWD with different bulking agents altered the physiochemical characteristics of composting matrix and the effective composting performance was observed through reduced ammonium nitrogen and increased seed germination index during 28 days of composting. The carbon loss of 19-22% through CO2 emission indicated similar carbon mineralisation with both types of sawdust; however, the nitrogen transformation pathways were different. Only WS treatment demonstrated the nitrification process, whereas the nitrogen loss was higher with FS. A total nitrogen loss of ∼15% was observed in treatments with FS, whereas WS treatments displayed a nitrogen loss of 12%. The outcome of the present study could significantly contribute to the practical aspect of the FWD composting operation with the promotion of the bio-recycling economy.

18.
Sci Total Environ ; 904: 166796, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37666346

RESUMEN

Anaerobic treatment of chloramphenicol wastewater holds significant promise due to its potential for bioenergy generation. However, the high concentration of organic matter and residual toxic substances in the wastewater severely inhibit the activity of microorganisms. In this study, a three-dimensional graphene aerogel (GA), as a conductive material with high specific surface area (114.942 m2 g-1) and pore volume (0.352 cm3 g-1), was synthesized and its role in the efficiency and related mechanism for EGSB reactor to treat chloramphenicol wastewater was verified. The results indicated that synergy effects of GA for Chemical Oxygen Demand (COD) removal (increased by 8.17 %), chloramphenicol (CAP) removal (increased by 4.43 %) and methane production (increased by 70.29 %). Furthermore, GA increased the average particle size of anaerobic granular sludge (AGS) and promoted AGS to secrete more redox active substances. Microbial community analysis revealed that GA increased the relative abundance of functional bacteria and archaea, specifically Syntrophomonas, Geobacter, Methanothrix, and Methanolinea. These microbial species can participate in direct interspecific electron transfer (DIET). This research serves as a theoretical foundation for the application of GA in mitigating the toxic impact of refractory organic substances, such as antibiotics, on microorganisms during anaerobic treatment processes.


Asunto(s)
Grafito , Aguas Residuales , Grafito/toxicidad , Eliminación de Residuos Líquidos/métodos , Cloranfenicol/toxicidad , Anaerobiosis , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Metano
19.
Sci Total Environ ; 865: 161289, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587698

RESUMEN

Recycling urban tail water for ecological base flow and landscape use offers a reliable solution for the problem of water resource shortage. But the long-term direct discharge of urban tail water can aggravate the eutrophication of surface water based on the present drainage standard of sewage plant. It is of great significance to develop low-cost and low-energy ecological technologies as transitional region between urban tail water and surface water. In this study, a pilot-scale ecological bed coupled with microbial electrochemical system (EB-MES) was established to treat urban tail water deeply. The system was operated for 96 days from June to September. Average TN removal efficiency in EB-MES under the condition of submerged plant coupled closed-circuit MES could reach 59.0 ± 16.6 %, which was 82.7 % and 38.1 % higher than that of open-circuit EB-MES and MES without plants, respectively. Microbial community structure testing indicated that multiple nitrogen metabolic mechanisms occurred in the system, including nitrification, electrode autotrophic denitrification, anammox, simultaneous nitrification and denitrification, and aerobic denitrification, which results in better denitrification efficiency under tail water. Our research provided a novel ecological technology with advantages of high-efficiency, low-energy and low-carbon and verified the feasibility in pilot scale for application in the advanced treatment of urban tail water.


Asunto(s)
Desnitrificación , Purificación del Agua , Nitrificación , Aguas del Alcantarillado/química , Purificación del Agua/métodos , Procesos Autotróficos , Nitrógeno/análisis , Reactores Biológicos
20.
Bioresour Technol ; 382: 129210, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37217149

RESUMEN

Microbiological polyhydroxyalkanoates (PHAs) are rooted as the most promising bio-replacements of synthetic polymers. Inherent properties of these PHAs further expand their applicability in numerous industrial, environmental, and clinical sectors. To propel these, a new environmental, endotoxin free gram-positive bacterium i.e., Bacillus cereus IBA1 was identified to harbor advantageous PHA producer characteristics through high-throughput omics mining approaches. Unlike traditional fermentations, nutrient enriched strategy was used to enhance PHA granular concentrations by ∼2.3 folds to 2.78 ± 0.19 g/L. Additionally, this study is the first to confirm an underlying growth dependent PHA biogenesis through exploring PHA granule associated operons which harbour constitutively expressing PHA synthase (phaC) coupled with differentially expressing PHA synthase subunit (phaR) and regulatory protein (phaP, phaQ) amid different growth phases. Moreover, the feasibility of this promising microbial phenomenon could propel next-generation biopolymers, and increase industrial applicability of PHAs, thereby significantly contributing to the sustainable development.


Asunto(s)
Polihidroxialcanoatos , Polihidroxialcanoatos/metabolismo , Bacillus cereus/metabolismo , Biopolímeros/metabolismo , Factores de Transcripción/metabolismo , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA