Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Cells ; 28(3): 188-201, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36562208

RESUMEN

The nuclear pore complex (NPC) provides a permeable barrier between the nucleoplasm and cytoplasm. In a subset of NPC constituents that regulate meiosis in the fission yeast Schizosaccharomyces pombe, we found that nucleoporin Nup132 (homolog of human Nup133) deficiency resulted in transient leakage of nuclear proteins during meiosis I, as observed in the nup132 gene-deleted mutant. The nuclear protein leakage accompanied the liberation of the small ubiquitin-like modifier (SUMO)-specific ubiquitin-like protease 1 (Ulp1) from the NPC. Ulp1 retention at the nuclear pore prevented nuclear protein leakage and restored normal meiosis in a mutant lacking Nup132. Furthermore, using mass spectrometry analysis, we identified DNA topoisomerase 2 (Top2) and RCC1-related protein (Pim1) as the target proteins for SUMOylation. SUMOylation levels of Top2 and Pim1 were altered in meiotic cells lacking Nup132. HyperSUMOylated Top2 increased the binding affinity at the centromeres of nup132 gene-deleted meiotic cells. The Top2-12KR sumoylation mutant was less localized to the centromeric regions. Our results suggest that SUMOylation of chromatin-binding proteins is regulated by the NPC-bound SUMO-specific protease and is important for the progression of meiosis.


Asunto(s)
Poro Nuclear , Schizosaccharomyces , Humanos , Poro Nuclear/metabolismo , Sumoilación , Schizosaccharomyces/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Meiosis , Péptido Hidrolasas/metabolismo , Ubiquitinas/genética
2.
Haematologica ; 108(5): 1284-1299, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36005562

RESUMEN

A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.g., vascular endothelial growth factor receptor). However, whether SCUBE1 is involved in the pathological activation of FLT3 during MLL-r leukemogenesis remains unknown. Here we first show that SCUBE1 is a direct target of HOXA9/MEIS1 that is highly expressed on the MLL-r cell surface and predicts poor prognosis in de novo acute myeloid leukemia. We further demonstrate, by using a conditional knockout mouse model, that Scube1 is required for both the initiation and maintenance of MLL-AF9-induced leukemogenesis in vivo. Further proteomic, molecular and biochemical analyses revealed that the membrane-tethered SCUBE1 binds to the FLT3 ligand and the extracellular ligand-binding domains of FLT3, thus facilitating activation of the signal axis FLT3-LYN (a non-receptor tyrosine kinase) to initiate leukemic growth and survival signals. Importantly, targeting surface SCUBE1 by an anti-SCUBE1 monomethyl auristatin E antibody-drug conjugate led to significantly decreased cell viability specifically in MLL-r leukemia. Our study indicates a novel function of SCUBE1 in leukemia and unravels the molecular mechanism of SCUBE1 in MLL-r acute myeloid leukemia. Thus, SCUBE1 is a potential therapeutic target for treating leukemia caused by MLL rearrangements.


Asunto(s)
Factor de Crecimiento Epidérmico , Leucemia Mieloide Aguda , Animales , Ratones , Tirosina Quinasa 3 Similar a fms , Leucemia Mieloide Aguda/patología , Ratones Noqueados , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteómica , Proteínas Tirosina Quinasas Receptoras , Factor A de Crecimiento Endotelial Vascular
3.
Inorg Chem ; 62(10): 4043-4047, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36847330

RESUMEN

The assembly of supertetrahedral chalcogenolate clusters (SCCs) and multifunctional organic linkers could lead to the formation of tunable structures and synergistic properties. Two SCC-based assembled materials (SCCAM-1 and -2) constructed by a triangular chromophore ligand, tris(4-pyridylphenyl)amine, were successfully synthesized and characterized. The SCCAMs demonstrate unusually long-lived afterglow at low temperatures (83 K) and efficient activities for the photocatalytic degradation of organic dye in water.

4.
Breast Cancer Res ; 24(1): 21, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35303925

RESUMEN

BACKGROUND: We recently showed that fucosyltransferase 8 (FUT8)-mediated core fucosylation of transforming growth factor-ß receptor enhances its signaling and promotes breast cancer invasion and metastasis. However, the complete FUT8 target glycoproteins and their downstream signaling networks critical for breast cancer progression remain largely unknown. METHOD: We performed quantitative glycoproteomics with two highly invasive breast cancer cell lines to unravel a comprehensive list of core-fucosylated glycoproteins by comparison to parental wild-type and FUT8-knockout counterpart cells. In addition, ingenuity pathway analysis (IPA) was performed to highlight the most enriched biological functions and signaling pathways mediated by FUT8 targets. Novel FUT8 target glycoproteins with biological interest were functionally studied and validated by using LCA (Lens culinaris agglutinin) blotting and LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. RESULTS: Loss-of-function studies demonstrated that FUT8 knockout suppressed the invasiveness of highly aggressive breast carcinoma cells. Quantitative glycoproteomics identified 140 common target glycoproteins. Ingenuity pathway analysis (IPA) of these target proteins gave a global and novel perspective on signaling networks essential for breast cancer cell migration and invasion. In addition, we showed that core fucosylation of integrin αvß5 or IL6ST might be crucial for breast cancer cell adhesion to vitronectin or enhanced cellular signaling to interleukin 6 and oncostatin M, two cytokines implicated in the breast cancer epithelial-mesenchymal transition and metastasis. CONCLUSIONS: Our report reveals a comprehensive list of core-fucosylated target proteins and provides novel insights into signaling networks crucial for breast cancer progression. These findings will assist in deciphering the complex molecular mechanisms and developing diagnostic or therapeutic approaches targeting these signaling pathways in breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Fucosiltransferasas , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cromatografía Liquida , Femenino , Fucosiltransferasas/genética , Glicoproteínas , Humanos , Espectrometría de Masas en Tándem
5.
J Biomed Sci ; 28(1): 5, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33397354

RESUMEN

BACKGROUND: The accumulation of lipid-laden macrophages, foam cells, within sub-endothelial intima is a key feature of early atherosclerosis. Siglec-E, a mouse orthologue of human Siglec-9, is a sialic acid binding lectin predominantly expressed on the surface of myeloid cells to transduce inhibitory signal via recruitment of SH2-domain containing protein tyrosine phosphatase SHP-1/2 upon binding to its sialoglycan ligands. Whether Siglec-E expression on macrophages impacts foam cell formation and atherosclerosis remains to be established. METHODS: ApoE-deficient (apoE-/-) and apoE/Siglec-E-double deficient (apoE-/-/Siglec-E-/-) mice were placed on high fat diet for 3 months and their lipid profiles and severities of atherosclerosis were assessed. Modified low-density lipoprotein (LDL) uptake and foam cell formation in wild type (WT) and Siglec-E-/-- peritoneal macrophages were examined in vitro. Potential Siglec-E-interacting proteins were identified by proximity labeling in conjunction with proteomic analysis and confirmed by coimmunoprecipitation experiment. Impacts of Siglec-E expression and cell surface sialic acid status on oxidized LDL uptake and signaling involved were examined by biochemical assays. RESULTS: Here we show that genetic deletion of Siglec-E accelerated atherosclerosis without affecting lipid profile in apoE-/- mice. Siglec-E deficiency promotes foam cell formation by enhancing acetylated and oxidized LDL uptake without affecting cholesterol efflux in macrophages in vitro. By performing proximity labeling and proteomic analysis, we identified scavenger receptor CD36 as a cell surface protein interacting with Siglec-E. Further experiments performed in HEK293T cells transiently overexpressing Siglec-E and CD36 and peritoneal macrophages demonstrated that depletion of cell surface sialic acids by treatment with sialyltransferase inhibitor or sialidase did not affect interaction between Siglec-E and CD36 but retarded Siglec-E-mediated inhibition on oxidized LDL uptake. Subsequent experiments revealed that oxidized LDL induced transient Siglec-E tyrosine phosphorylation and recruitment of SHP-1 phosphatase in macrophages. VAV, a downstream effector implicated in CD36-mediated oxidized LDL uptake, was shown to interact with SHP-1 following oxidized LDL treatment. Moreover, oxidized LDL-induced VAV phosphorylation was substantially lower in WT macrophages comparing to Siglec-E-/- counterparts. CONCLUSIONS: These data support the protective role of Siglec-E in atherosclerosis. Mechanistically, Siglec-E interacts with CD36 to suppress downstream VAV signaling involved in modified LDL uptake.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/genética , Antígenos CD36/metabolismo , Células Espumosas/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/farmacología , Animales , Aterosclerosis/metabolismo , Ratones
6.
J Proteome Res ; 19(3): 1109-1118, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31989825

RESUMEN

Proximity labeling (PL) and chemical cross-linking (XL) mass spectrometry are two powerful methods to dissect protein-protein interactions (PPIs) in cells. Although PL typically captures neighboring proteins within a range of 10-20 nm of a single bait protein, chemical XL defines direct protein-protein contacts within 1 nm in a systemic manner. Here, we develop a new method, named PL/XL-MS, to harness the advantages of both PL and XL. PL/XL-MS can enrich a subcellular compartment by PL and simultaneously identify PPIs of multiple proteins from XL data. We applied PL/XL-MS to dissect the human nuclear envelope interactome. PL/XL-MS successfully enriched the nuclear envelope proteins and identified most known inner nuclear membrane proteins. By searching the cross-linked peptides, we successfully observed 109 literature-curated PPIs of 14 nuclear envelope proteins. Based on the homoprotein XL data, we experimentally characterized a nuclear matrix protein, Matrin-3, and observed its preferential localization near the nuclear envelope. PL/XL-MS is a simple and general method for studying protein networks in a subproteome of interest.


Asunto(s)
Membrana Nuclear , Proteómica , Reactivos de Enlaces Cruzados , Disección , Humanos , Espectrometría de Masas , Proteínas
7.
J Biomed Sci ; 27(1): 2, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898491

RESUMEN

BACKGROUND: Serglycin (SRGN), previously recognized as an intracellular proteoglycan involved in the storage processes of secretory granules, has recently been shown to be upregulated in several solid tumors. We have previously shown that SRGN in non-small cell lung cancer (NSCLC) promotes malignant phenotypes in a CD44-dependent manner and increased expression of SRGN predicts poor prognosis of primary lung adenocarcinomas. However, the underlying mechanism remains to be defined. METHODS: Overexpression, knockdown and knockout approaches were performed to assess the role of SRGN in cell motility using wound healing and Boyden chamber migration assays. SRGN devoid of glycosaminoglycan (GAG) modification was produced by site-directed mutagenesis or chondroitinase treatment. Liquid chromatography/tandem mass spectrometry was applied for quantitative analysis of the disaccharide compositions and sulfation extent of SRGN GAGs. Western blot and co-immunoprecipitation analyses were performed to determine the expression and interaction of proteins of interest. Actin cytoskeleton organization was monitored by immunofluorescence staining. RESULTS: SRGN expressed by NSCLC cells is readily secreted to the extracellular matrix in a heavily glycosylated form attached with mainly chondroitin sulfate (CS)-GAG chains, and to a lesser extent with heparin sulfate (HS). The CS-GAG moiety serves as the structural motif for SRGN binding to tumor cell surface CD44 and promotes cell migration. SRGN devoid of CS-GAG modification fails to interact with CD44 and has lost the ability to promote cell migration. SRGN/CD44 interaction promotes focal adhesion turnover via Src-mediated paxillin phosphorylation and disassembly of paxillin/FAK adhesion complex, facilitating cell migration. In support, depletion of Src activity or removal of CS-GAGs efficiently blocks SRGN-mediated Src activation and cell migration. SRGN also promotes cell migration via inducing cytoskeleton reorganization mediated through RAC1 and CDC42 activation accompanied with increased lamellipodia and filopodia formation. CONCLUSIONS: Proteoglycan SRGN promotes NSCLC cell migration via the binding of its GAG motif to CD44. SRGN/CD44 interaction induces Rho-family GTPase-mediated cytoskeleton reorganization and facilitates Src-mediated focal adhesion turnover, leading to increased cell migration. These findings suggest that targeting specific glycans in tumor microenvironment that serve as ligands for oncogenic pathways may be a potential strategy for cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Glicosaminoglicanos/genética , Receptores de Hialuranos/genética , Proteoglicanos/genética , Proteínas de Transporte Vesicular/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Glicosaminoglicanos/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica/genética , Proteoglicanos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rho/genética , Familia-src Quinasas/genética
8.
Molecules ; 25(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825798

RESUMEN

Prolonged treatment with cisplatin (CDDP) frequently develops chemoresistance. We have previously shown that p22phox, an endoplasmic reticulum (ER) membrane protein, confers CDDP resistance by blocking CDDP nuclear entry in oral squamous cell carcinoma (OSCC) cells; however, the underlying mechanism remains unresolved. Using a fluorescent dye-labeled CDDP, here we show that CDDP can bind to p22phox in both cell-based and cell-free contexts. Subsequent detection of CDDP-peptide interaction by the Tris-Tricine-based electrophoresis revealed that GA-30, a synthetic peptide matching a region of the cytosolic domain of p22phox, could interact with CDDP. These results were further confirmed by liquid chromatography-mass spectrometry (LC-MS) analysis, from which MA-11, an 11-amino acid subdomain of the GA-30 domain, could largely account for the interaction. Amino acid substitutions at Cys50, Met65 and Met73, but not His72, significantly impaired the binding between CDDP and the GA-30 domain, thereby suggesting the potential CDDP-binding residues in p22phox protein. Consistently, the p22phox point mutations at Cys50, Met65 and Met73, but not His72, resensitized OSCC cells to CDDP-induced cytotoxicity and apoptosis. Finally, p22phox might have binding specificity for the platinum drugs, including CDDP, carboplatin and oxaliplatin. Together, we have not only identified p22phox as a novel CDDP-binding protein, but further highlighted the importance of such a drug-protein interaction in drug resistance.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , NADPH Oxidasas/metabolismo , Compuestos Organoplatinos/administración & dosificación , Compuestos Organoplatinos/metabolismo , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Apoptosis , Carboplatino/administración & dosificación , Carboplatino/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular , Cisplatino/administración & dosificación , Cisplatino/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , NADPH Oxidasas/genética , Oxaliplatino/administración & dosificación , Oxaliplatino/metabolismo , Células Tumorales Cultivadas
9.
Sensors (Basel) ; 17(3)2017 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-28287492

RESUMEN

A new strategy to discriminate four types of hazardous gases is proposed in this research. Through modulating the operating temperature and the processing response signal with a pattern recognition algorithm, a gas sensor consisting of a single sensing electrode, i.e., ZnO/In2O3 composite, is designed to differentiate NO2, NH3, C3H6, CO within the level of 50-400 ppm. Results indicate that with adding 15 wt.% ZnO to In2O3, the sensor fabricated at 900 °C shows optimal sensing characteristics in detecting all the studied gases. Moreover, with the aid of the principle component analysis (PCA) algorithm, the sensor operating in the temperature modulation mode demonstrates acceptable discrimination features. The satisfactory discrimination features disclose the future that it is possible to differentiate gas mixture efficiently through operating a single electrode sensor at temperature modulation mode.

10.
Acta Cardiol Sin ; 30(5): 466-73, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27122820

RESUMEN

BACKGROUND: 20(S)-protopanaxadiol (PPD), a natural compound of dammarane ginsenoside purified from the ginseng plant, exhibits strong anticancer properties. It has also been reported to have strong antioxidant activity and plays a role in cardiovascular protection. However, the downstream signaling mechanism PPD employs is still unclear and requires further elucidation. METHODS: Endothelial cells (ECs) EAhy 926 were used to investigate the growth promoting effect of PPD. The protein lysates extracted from both mock- and PPD-treated cells were separated by two-dimensional gel electrophoresis (2-DE) to monitor protein changes. After image analysis, proteins with significant change in the expression level were further identified by mass spectrometry. Western blot was applied to further confirm the protein variations in the 2-DE assay. RESULTS: In the current study, we found that treatment with PPD (10 µg/ml) significantly increased ECs healing. The translational proteome was established according to 16 up-regulated and 8 down-regulated proteins identified in 2-DE. These proteins were reported to function as energy homeostasis and in the prevention of oxidative stress. The elevated expressions of heme oxygenase 1 (HO-1) and glutathione synthetase (GSS) were further confirmed in the western blot analysis. CONCLUSIONS: According to the information obtained from translational proteome, we delineated that PPD mediated vascular homeostasis through the up-regulation of anti-oxidative proteins. Additional functional investigations are necessary regarding the HO-1 and GSS proteins. KEY WORDS: Dammarane sapogenins; Endothelial cell; Glutathione synthetase; Heme oxygenase 1; Proteome; 20(S)-protopanaxadiol.

11.
Acta Cardiol Sin ; 30(1): 67-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27122770

RESUMEN

BACKGROUND: Statins are lipid-lowering drugs that can simultaneously evoke pleiotropic effects on cardioprotection, vasodilation, and diabetes prevention. Recently, statins have been reported to be able to activate the AMP-activated protein kinase, thereby up-regulating sirtuin (SIRT) that functions as non-histone deacetylases. Therefore, it is essential to investigate the post-translational acetylome that might explain the mechanism of statin-modulated pleiotropic effects. METHODS: Endothelial cells EAhy 926 treated with rosuvastatin were used to monitor the expression of SIRTs proteins. The protein lysates of both mock- and rosuvastatin-treated cells were further separated by two- dimensional gel electrophoresis coupled with western blotting analysis. The significantly changed acetyl- containing proteins detected by using an anti-acetyl lysine antibody were collected from another preparative gel for mass spectrometric assay to identify the acetylated site in the proteins. RESULTS: Rosuvastatin treatment was shown to increase the SIRT1 expression when compared with SIRT2. Among 100 detected proteins with acetylated signal, 12 showed an increased level of acetylation, whereas 6 showed a decreased level of acetylation (deacetylation). The acetylated lysine (K) sites of 3 heat shock proteins, i.e., HSP47/K(165), HSP70/K(380), and heat shock-inducible protein/K(417), were determined. We also found that beta-filamin, elongation factor, galectin and hCG22067 have 2 acetylated lysine sites in their peptide sequences. These dynamic acetylations might alter the protein's function and are thought to be important in regulating statin-mediated pleiotropic effect. CONCLUSIONS: Our study provided a feasible methodology for detecting acetylated proteins. This acetylome information may be utilized to explain, at least partially, the mechanisms of statin-derived pleiotropic effects. KEY WORDS: Acetylation/deacetylation; Acetylome; Endothelial cell; Proteomics; Rosuvastatin; Sirtuin.

12.
Chem Commun (Camb) ; 60(24): 3279-3282, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421017

RESUMEN

Incorporating functional organic linkers into supertetrahedral chalcogenolate cluster-based materials is an effective synthetic strategy to expand structural diversity and generate tunable optical and photoelectric properties arising from synergistic effects. Herein, a mixed ligand engineering approach was adopted to design a supertetrahedral cluster-based assembled material [(Cd6Ag4(SPh)16(TPPA)(BPE)0.5)·2DMF]n (denoted as SCCAM-3) with a 2D bilayer architecture and broader visible-light absorption. Interestingly, SCCAM-3 demonstrates a long-lived afterglow at 83 K and efficient photocatalytic activity for degrading tetracycline in water.

13.
Acta Biomater ; 173: 325-335, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000526

RESUMEN

Plasma membrane isolation is a foundational process in membrane proteomic research, cellular vesicle studies, and biomimetic nanocarrier development, yet separation processes for this outermost layer are cumbersome and susceptible to impurities and low yield. Herein, we demonstrate that cellular cytosol can be chemically polymerized for decoupling and isolation of plasma membrane within minutes. A rapid, non-disruptive in situ polymerization technique is developed with cell membrane-permeable polyethyleneglycol-diacrylate (PEG-DA) and a blue-light-sensitive photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The photopolymerization chemistry allows for precise control of intracellular polymerization and tunable confinement of cytosolic molecules. Upon cytosol solidification, plasma membrane proteins and vesicles are rapidly derived and purified as nucleic acids and intracellular proteins as small as 15 kDa are stably entrapped for removal. The polymerization chemistry and membrane derivation technique are broadly applicable to primary and fragile cell types, enabling facile membrane vesicle extraction from shorted-lived neutrophils and human primary CD8 T cells. The study demonstrates tunable intracellular polymerization via optimized live cell chemistry, offers a robust membrane isolation methodology with broad biomedical utility, and reveals insights on molecular crowding and confinement in polymerized cells. STATEMENT OF SIGNIFICANCE: Isolating the minute fraction of plasma membrane proteins and vesicles requires extended density gradient ultracentrifugation processes, which are susceptible to low yield and impurities. The present work demonstrates that the membrane isolation process can be vastly accelerated via a rapid, non-disruptive intracellular polymerization approach that decouples cellular cytosols from the plasma membrane. Following intracellular polymerization, high-yield plasma membrane proteins and vesicles can be derived from lysis buffer and sonication treatment, respectively. And the intracellular content entrapped within the polymerized hydrogel is readily removed within minutes. The technique has broad utility in membrane proteomic research, cellular vesicle studies, and biomimetic materials development, and the work offers insights on intracellular hydrogel-mediated molecular confinement.


Asunto(s)
Proteínas de la Membrana , Proteómica , Humanos , Polimerizacion , Membrana Celular , Hidrogeles/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-39034165

RESUMEN

BACKGROUND: The adverse effects of sepsis-associated acute kidney injury (SA-AKI) highlight the need for new biomarkers. Signal Peptide-Complement C1r/C1s, Uegf, Bmp1-Epidermal Growth Factor-like Domain-Containing Protein 2 (SCUBE2), important for angiogenesis and endothelial integrity, has been linked to increased mortality in models of lipopolysaccharide-induced lung injury. This research aimed to assess the utility of plasma SCUBE2 levels as a prognostic indicator for SA-AKI in intensive care unit (ICU) patients. METHODS: Between September 2020 and December 2022, our study enrolled ICU patients diagnosed with stage 3 SA-AKI. We collected demographic information, illness severity indices, and laboratory data, including plasma SCUBE2 and sepsis-triggered cytokine levels. We employed receiver operating characteristic curves and DeLong tests to assess the predictive accuracy for survival, Kaplan-Meier curves to evaluate the relative risk of death, and multivariate logistic regression to identify independent mortality predictors. RESULTS: Among the total of 200 participants, the survivors had significantly higher plasma SCUBE2 levels (115.9 ng/mL) compared to those who died (35.6 ng/mL). SCUBE2 levels showed a positive correlation with the anti-inflammatory cytokine IL-10 and a negative correlation with the APACHE II score, SOFA score, C-reactive protein, and monocyte chemoattractant protein-1. Multivariate analysis revealed that elevated SCUBE2 and IL-10 levels were independently protective against mortality, and associated with the most favorable 30-day survival outcomes. CONCLUSIONS: In ICU patients with stage 3 SA-AKI, lower plasma levels of SCUBE2 were correlated with elevated pro-inflammatory factors, which impacted survival outcomes. This suggests that SCUBE2 could be a potential biomarker for predicting prognosis in patients with SA-AKI.

15.
J Pain ; 24(11): 1915-1930, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37271352

RESUMEN

The complexity and diversity of pain signaling have led to obstacles for prominent treatments due to mechanisms that are not yet fully understood. Among adenosine triphosphate (ATP) receptors, P2×7 differs in many respects from P2×1-6, it plays a significant role in various inflammatory pain, but whether it plays a role in noninflammatory pain has not been widely discussed. In this study, we utilized major neuropharmacological methods to record the effects of manipulating P2×7 during nociceptive signal transmission in the thalamocingulate circuits. Our results show that regardless of the specific cell type distribution of P2×7 in the central nervous system (CNS), it participates directly in the generated nociceptive transmission, which indicates its apparent functional existence in the major pain transmission path, the thalamocingulate circuits. Activation of P2×7 may facilitate transmission velocity along the thalamocingulate projection as well as neuron firings and synaptic vesicle release in anterior cingulate cortical neurons. Targeting thalamic P2×7 affects glutamate and ATP secretion during nociceptive signal transmission. PERSPECTIVE: The observations in this study provide evidence that the ATP receptor P2×7 presents in the central ascending pain path and plays a modulatory role during nociceptive transmission, which could contribute new insights for many antinociceptive applications.


Asunto(s)
Nocicepción , Dolor , Humanos , Dolor/metabolismo , Neuronas/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Receptores Purinérgicos P2X7/metabolismo
16.
Microbiol Spectr ; 11(4): e0059623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37310229

RESUMEN

Cytoadherence and migration are crucial for pathogens to establish colonization in the host. In contrast to a nonadherent isolate of Trichomonas vaginalis, an adherent one expresses more actin-related machinery proteins with more active flagellate-amoeboid morphogenesis, amoeba migration, and cytoadherence, activities that were abrogated by an actin assembly blocker. By immunoprecipitation coupled with label-free quantitative proteomics, an F-actin capping protein (T. vaginalis F-actin capping protein subunit α [TvFACPα]) was identified from the actin-centric interactome. His-TvFACPα was detected at the barbed end of a growing F-actin filament, which inhibited elongation and possessed atypical activity in binding G-actin in in vitro assays. TvFACPα partially colocalized with F-actin at the parasite pseudopod protrusion and formed a protein complex with α-actin through its C-terminal domain. Meanwhile, TvFACPα overexpression suppressed F-actin polymerization, amoeboid morphogenesis, and cytoadherence in this parasite. Ser2 phosphorylation of TvFACPα enriched in the amoeboid stage of adhered trophozoites was reduced by a casein kinase II (CKII) inhibitor. Site-directed mutagenesis and CKII inhibitor treatment revealed that Ser2 phosphorylation acts as a switching signal to alter TvFACPα actin-binding activity and the consequent actin cytoskeleton behaviors. Through CKII signaling, TvFACPα also controls the conversion of adherent trophozoites from amoeboid migration to the flagellate form with axonemal motility. Together, CKII-dependent Ser2 phosphorylation regulates TvFACPα binding to actin to fine-tune cytoskeleton dynamics and drive crucial behaviors underlying host colonization by T. vaginalis. IMPORTANCE Trichomoniasis is one of the most prevalent nonviral sexually transmitted diseases. T. vaginalis cytoadherence to urogenital epithelium cells is the first step in the colonization of the host. However, studies on the mechanisms of cytoadherence have focused mainly on the role of adhesion molecules, and their effects are limited when analyzed by loss- or gain-of-function assays. This study proposes an extra pathway in which the actin cytoskeleton mediated by a capping protein α-subunit may play roles in parasite morphogenesis, cytoadherence, and motility, which are crucial for colonization. Once the origin of the cytoskeleton dynamics could be manipulated, the consequent activities would be controlled as well. This mechanism may provide new potential therapeutic targets to impair this parasite infection and relieve the increasing impact of drug resistance on clinical and public health.


Asunto(s)
Trichomonas vaginalis , Trichomonas vaginalis/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Capping de la Actina/metabolismo
17.
iScience ; 26(10): 107997, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810249

RESUMEN

15-keto-PGE2 is one of the eicosanoids with anti-inflammatory properties. In this study, we demonstrated that 15-keto-PGE2 post-translationally modified the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunits p105/p50 and p65 at Cys59 and Cys120 sites, respectively, hence inhibiting the activation of NF-κB signaling in macrophages. In mice fed a high-fat and high-sucrose diet (HFHSD), 15-keto-PGE2 treatment reduced pro-inflammatory cytokines and fasting glucose levels. In mice with non-alcoholic steatohepatitis (NASH) induced by a prolonged HFHSD, 15-keto-PGE2 treatment significantly decreased liver inflammation, lowered serum levels of alanine transaminase (ALT) and aspartate transferase (AST), and inhibited macrophage infiltration. It also reduced lipid droplet size and downregulated key regulators of lipogenesis. These findings highlight the potential of 15-keto-PGE2, through NF-κB modification, in preventing the development and progression of steatohepatitis, emphasizing the significance of endogenous lipid mediators in the inflammatory response.

18.
Nat Commun ; 14(1): 5971, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749090

RESUMEN

Obesity and type 2 diabetes have reached pandemic proportion. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal. A missense Glu504Lys mutation of the ALDH2 gene is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We find that male Aldh2 knock-in mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver due to reduced adaptive thermogenesis and energy expenditure. We find reduced activity of ALDH2 of the brown adipose tissue from the male Aldh2 homozygous knock-in mice. Proteomic analyses of the brown adipose tissue from the male Aldh2 knock-in mice identifies increased 4-hydroxynonenal-adducted proteins involved in mitochondrial fatty acid oxidation and electron transport chain, leading to markedly decreased fatty acid oxidation rate and mitochondrial respiration of brown adipose tissue, which is essential for adaptive thermogenesis and energy expenditure. AD-9308 is a water-soluble, potent, and highly selective ALDH2 activator. AD-9308 treatment ameliorates diet-induced obesity and fatty liver, and improves glucose homeostasis in both male Aldh2 wild-type and knock-in mice. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Humanos , Masculino , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Proteómica , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Mutación , Obesidad/genética , Ácidos Grasos , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo
19.
Proteome Sci ; 10(1): 43, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22799578

RESUMEN

BACKGROUND: The pleiotropic effects of 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins), which are independent from their cholesterol-lowering action, have been widely recognized in various biological systems. Statins can affect endothelial homeostasis, which is partly modulated by the production of nitric oxide (NO). However, it is unclear how statin/NO-mediated posttranslational S-nitrosylation of endothelial proteins and changes in translational profiles may benefit endothelial integrity. Therefore, it is important to understand the statin/NO-mediated S-nitrosylation in endothelial cells. RESULTS: Rosuvastatin treatment of human umbilical vein endothelial cells (ECs) enhanced the enzymatic activity of endothelial nitric oxide synthase (eNOS) and the expression of 78 S-nitrosoproteins. Among these S-nitrosoproteins, we identified 17 proteins, including protein disulfide bond isomerase, phospholipase C, transaldolase and heat shock proteins. Furthermore, a hydrophobic Cys66 was determined as the S-nitrosylation site of the mitochondrial HSP70. In addition to the statin-modulated posttranslational S-nitrosylation, changes in the NO-mediated translational proteome were also observed. Seventeen major proteins were significantly upregulated after rosuvastatin treatment. However, 12 of these proteins were downregulated after pretreating ECs with an eNOS inhibitor (L-NAME), which indicated that their expression was modulated by NO. CONCLUSIONS: ECs treated with rosuvastatin increase eNOS activation. The increased NO production is involved in modulating S-nitrosylation and translation of proteins. We provide further evidence of the pleiotropic effect of rosuvastatin on endothelial physiology.

20.
Biomedicines ; 10(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35327386

RESUMEN

Plasma galectin-3 (Gal-3) is associated with organ fibrosis, but whether urinary Gal-3 is a potential biomarker of kidney disease progression has never been explored. Between 2018 and 2021, we prospectively enrolled 280 patients who underwent renal biopsy and were divided into three groups based on their urinary Gal-3 levels (<354.6, 354.6−510.7, and ≥510.8 pg/mL) to assess kidney disease progression (defined as ≥40% decline in the estimated glomerular filtration rate or end-stage renal disease) and renal histology findings. Patients in the highest urinary Gal-3 tertile had the lowest eGFRs and highest proteinuria levels. In multivariate Cox regression models, patients in the highest tertile had the highest risk of kidney disease progression (adjusted hazard ratio, 4.60; 95% confidence interval, 2.85−7.71) compared to those in the lowest tertile. Higher urinary Gal-3 levels were associated with more severe renal fibrosis. Intrarenal mRNA expression of LGALS3 (Gal-3-encoded gene) was most correlated with the renal stress biomarkers (IGFBP7 and TIMB2), renal function biomarkers (PTGDS) and fibrosis-associated genes (TGFB1). The urinary Gal-3 level may be useful for the identification of patients at high risk of kidney disease progression and renal fibrosis, and for the early initiation of treatments for these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA