Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.852
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(20): 3582-3587, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37863025

RESUMEN

In recent years, increasing evidence has highlighted the profound connection between DNA damage repair and the activation of immune responses. We spoke with researchers about their mechanistic interplays and the implications for cancer and other diseases.


Asunto(s)
Daño del ADN , Reparación del ADN , Transducción de Señal , Inmunidad
2.
Cell ; 153(3): 590-600, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622243

RESUMEN

DNA mismatch repair (MMR) ensures replication fidelity by correcting mismatches generated during DNA replication. Although human MMR has been reconstituted in vitro, how MMR occurs in vivo is unknown. Here, we show that an epigenetic histone mark, H3K36me3, is required in vivo to recruit the mismatch recognition protein hMutSα (hMSH2-hMSH6) onto chromatin through direct interactions with the hMSH6 PWWP domain. The abundance of H3K36me3 in G1 and early S phases ensures that hMutSα is enriched on chromatin before mispairs are introduced during DNA replication. Cells lacking the H3K36 trimethyltransferase SETD2 display microsatellite instability (MSI) and an elevated spontaneous mutation frequency, characteristic of MMR-deficient cells. This work reveals that a histone mark regulates MMR in human cells and explains the long-standing puzzle of MSI-positive cancer cells that lack detectable mutations in known MMR genes.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Código de Histonas , Secuencia de Aminoácidos , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Humanos , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
3.
Cell ; 153(5): 1012-24, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706739

RESUMEN

Histone acetylation plays critical roles in chromatin remodeling, DNA repair, and epigenetic regulation of gene expression, but the underlying mechanisms are unclear. Proteasomes usually catalyze ATP- and polyubiquitin-dependent proteolysis. Here, we show that the proteasomes containing the activator PA200 catalyze the polyubiquitin-independent degradation of histones. Most proteasomes in mammalian testes ("spermatoproteasomes") contain a spermatid/sperm-specific α subunit α4 s/PSMA8 and/or the catalytic ß subunits of immunoproteasomes in addition to PA200. Deletion of PA200 in mice abolishes acetylation-dependent degradation of somatic core histones during DNA double-strand breaks and delays core histone disappearance in elongated spermatids. Purified PA200 greatly promotes ATP-independent proteasomal degradation of the acetylated core histones, but not polyubiquitinated proteins. Furthermore, acetylation on histones is required for their binding to the bromodomain-like regions in PA200 and its yeast ortholog, Blm10. Thus, PA200/Blm10 specifically targets the core histones for acetylation-mediated degradation by proteasomes, providing mechanisms by which acetylation regulates histone degradation, DNA repair, and spermatogenesis.


Asunto(s)
Reparación del ADN , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Espermatogénesis , Testículo/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Roturas del ADN de Doble Cadena , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
4.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
5.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498709

RESUMEN

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Asunto(s)
Enfermedad de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Nucleotidiltransferasas/genética , ADN , Apoptosis/genética , Homólogo 1 de la Proteína MutL/genética
6.
Proc Natl Acad Sci U S A ; 121(4): e2311732121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232289

RESUMEN

Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.

7.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607975

RESUMEN

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Asunto(s)
Autofagia Mediada por Chaperones , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Lipólisis , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Membrana de los Lisosomas , ARN Interferente Pequeño
8.
PLoS Biol ; 21(7): e3002197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410725

RESUMEN

Drosophila melanogaster Down syndrome cell adhesion molecule 1 (Dscam1) encodes 19,008 diverse ectodomain isoforms via the alternative splicing of exon 4, 6, and 9 clusters. However, whether individual isoforms or exon clusters have specific significance is unclear. Here, using phenotype-diversity correlation analysis, we reveal the redundant and specific roles of Dscam1 diversity in neuronal wiring. A series of deletion mutations were performed from the endogenous locus harboring exon 4, 6, or 9 clusters, reducing to 396 to 18,612 potential ectodomain isoforms. Of the 3 types of neurons assessed, dendrite self/non-self discrimination required a minimum number of isoforms (approximately 2,000), independent of exon clusters or isoforms. In contrast, normal axon patterning in the mushroom body and mechanosensory neurons requires many more isoforms that tend to associate with specific exon clusters or isoforms. We conclude that the role of the Dscam1 diversity in dendrite self/non-self discrimination is nonspecifically mediated by its isoform diversity. In contrast, a separate role requires variable domain- or isoform-related functions and is essential for other neurodevelopmental contexts, such as axonal growth and branching. Our findings shed new light on a general principle for the role of Dscam1 diversity in neuronal wiring.


Asunto(s)
Síndrome de Down , Proteínas de Drosophila , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Molécula 1 de Adhesión Celular/genética , Molécula 1 de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Síndrome de Down/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neuronas/metabolismo
9.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340342

RESUMEN

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Asunto(s)
ADN-Topoisomerasas de Tipo I , G-Cuádruplex , Transcripción Genética , Humanos , ADN/química , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Ligandos , Inhibidores de Topoisomerasa I/farmacología
10.
PLoS Pathog ; 19(6): e1011482, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379353

RESUMEN

Wall teichoic acid (WTA) is the abundant cell wall-associated glycopolymer in Gram-positive bacteria, playing crucial roles in surface proteins retention, bacterial homeostasis, and virulence. The WTA glycosylation of Listeria monocytogenes is essential for surface anchoring of virulence factors, whereas the nature and function of the noncovalent interactions between cell wall-associated proteins and WTA are less unknown. In this study, we found that galactosylated WTA (Gal-WTA) of serovar (SV) 4h L. monocytogenes plays a key role in modulating the novel glycine-tryptophan (GW) domain-containing autolysin protein LygA through direct interactions. Gal-deficient WTA of Lm XYSN (ΔgalT) showed a dramatic reduction of LygA on the cell surface. We demonstrated that LygA binds to Gal-WTA through the GW domains, and the binding affinity is associated with the number of GW motifs. Moreover, we confirmed the direct Gal-dependent binding of the GW protein Auto from the type I WTA strain, which has no interaction with rhamnosylated WTA, indicating that the complexity of both WTA and GW proteins affect the coordination patterns. Importantly, we revealed the crucial roles of LygA in facilitating bacterial homeostasis as well as crossing the intestinal and blood-brain barriers. Altogether, our findings suggest that both the glycosylation patterns of WTA and a fixed numbers of GW domains are closely associated with the retention of LygA on the cell surface, which promotes the pathogenesis of L. monocytogenes within the host.


Asunto(s)
Listeria monocytogenes , Virulencia , Membrana Celular/metabolismo , Pared Celular/metabolismo , Factores de Virulencia/metabolismo , Proteínas de la Membrana/metabolismo , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/metabolismo
11.
EMBO Rep ; 24(2): e54313, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36524339

RESUMEN

Somatosensory neurons are highly heterogeneous with distinct types of neural cells responding to specific stimuli. However, the distribution and roles of cell-type-specific long intergenic noncoding RNAs (lincRNAs) in somatosensory neurons remain largely unexplored. Here, by utilizing droplet-based single-cell RNA-seq (scRNA-seq) and full-length Smart-seq2, we show that lincRNAs, but not coding mRNAs, are enriched in specific types of mouse somatosensory neurons. Profiling of lincRNAs from single neurons located in dorsal root ganglia (DRG) identifies 200 lincRNAs localized in specific types or subtypes of somatosensory neurons. Among them, the conserved cell-type-specific lincRNA CLAP associates with pruritus and is abundantly expressed in somatostatin (SST)-positive neurons. CLAP knockdown reduces histamine-induced Ca2+ influx in cultured SST-positive neurons and in vivo reduces histamine-induced scratching in mice. In vivo knockdown of CLAP also decreases the expression of neuron-type-specific and itch-related genes in somatosensory neurons, and this partially depends on the RNA binding protein MSI2. Our data reveal a cell-type-specific landscape of lincRNAs and a function for CLAP in somatosensory neurons in sensory transmission.


Asunto(s)
Prurito , ARN Largo no Codificante , Células Receptoras Sensoriales , Animales , Ratones , Histamina , Prurito/genética , ARN Largo no Codificante/genética , Sensación
12.
Nucleic Acids Res ; 51(D1): D593-D602, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36243971

RESUMEN

Metalloenzymes are attractive research targets in fields of chemistry, biology, and medicine. Given that metalloenzymes can manifest conservation of metal-coordination and ligand binding modes, the excavation and expansion of metalloenzyme-specific knowledge is of interest in bridging metalloenzyme-related fields. Building on our previous metalloenzyme-ligand association database, MeLAD, we have expanded the scope of metalloenzyme-specific knowledge and services, by forming a versatile platform, termed the Metalloenzyme Data Bank and Analysis (MeDBA). The MeDBA provides: (i) manual curation of metalloenzymes into different categories, that this M-I, M-II and M-III; (ii) comprehensive information on metalloenzyme activities, expression profiles, family and disease links; (iii) structural information on metalloenzymes, in particular metal binding modes; (iv) metalloenzyme substrates and bioactive molecules acting on metalloenzymes; (v) excavated metal-binding pharmacophores and (vi) analysis tools for structure/metal active site comparison and metalloenzyme profiling. The MeDBA is freely available at https://medba.ddtmlab.org.


Asunto(s)
Bases de Datos de Proteínas , Metaloproteínas , Dominio Catalítico , Ligandos , Metaloproteínas/metabolismo , Metales , Enzimas
13.
Proc Natl Acad Sci U S A ; 119(40): e2201738119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161943

RESUMEN

Mismatch repair (MMR) is a replication-coupled DNA repair mechanism and plays multiple roles at the replication fork. The well-established MMR functions include correcting misincorporated nucleotides that have escaped the proofreading activity of DNA polymerases, recognizing nonmismatched DNA adducts, and triggering a DNA damage response. In an attempt to determine whether MMR regulates replication progression in cells expressing an ultramutable DNA polymerase ɛ (Polɛ), carrying a proline-to-arginine substitution at amino acid 286 (Polɛ-P286R), we identified an unusual MMR function in response to hydroxyurea (HU)-induced replication stress. Polɛ-P286R cells treated with hydroxyurea exhibit increased MRE11-catalyzed nascent strand degradation. This degradation by MRE11 depends on the mismatch recognition protein MutSα and its binding to stalled replication forks. Increased MutSα binding at replication forks is also associated with decreased loading of replication fork protection factors FANCD2 and BRCA1, suggesting blockage of these fork protection factors from loading to replication forks by MutSα. We find that the MutSα-dependent MRE11-catalyzed fork degradation induces DNA breaks and various chromosome abnormalities. Therefore, unlike the well-known MMR functions of ensuring replication fidelity, the newly identified MMR activity of promoting genome instability may also play a role in cancer avoidance by eliminating rogue cells.


Asunto(s)
Proteínas de Unión al ADN , Hidroxiurea , Aminoácidos/genética , Arginina/genética , Aductos de ADN , Reparación de la Incompatibilidad de ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Hidroxiurea/farmacología , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Nucleótidos/metabolismo , Prolina/genética
14.
PLoS Genet ; 18(10): e1010455, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206313

RESUMEN

Many plant secondary substances are feeding deterrents for insects and play a key role in the selection of host plants. The taste sensilla of phytophagous insects contain gustatory sensory neurons sensitive to deterrents but the molecular basis of deterrent chemoreception remains unknown. We investigated the function of Gr180, the most highly expressed bitter gustatory receptor in the maxillary galea of Helicoverpa armigera larvae. Functional analyses using the Xenopus oocyte expression system and two-electrode voltage clamp revealed that the oocytes expressing Gr180 responded to coumarin. Tip recording results showed that the medial sensilla styloconica of the maxilla of fifth instar larvae exhibited electrophysiological responses to coumarin. Two-choice feeding bioassays confirmed that coumarin inhibited larval feeding. A homozygous mutant strain of H. armigera with truncated Gr180 proteins (Gr180-/-) was established using the CRISPR-Cas9 system. The responses of the medial sensilla styloconica in Gr180-/- to coumarin were almost abolished, and the responses to sinigrin and strychnine were also significantly decreased. Knockout of Gr180 alleviated the feeding deterrent effects of coumarin, sinigrin, and strychnine. Thus, we conclude that Gr180 is a receptor responding to coumarin,and also participates in sensing sinigrin and strychnine. These results enhance our understanding of the gustatory sensing mechanisms of phytophagous insects to deterrents.


Asunto(s)
Mariposas Nocturnas , Gusto , Animales , Larva/metabolismo , Gusto/genética , Estricnina/metabolismo , Estricnina/farmacología , Maxilar/metabolismo , Mariposas Nocturnas/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Cumarinas/metabolismo , Cumarinas/farmacología
15.
Proc Natl Acad Sci U S A ; 119(49): e2215442119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442117

RESUMEN

Sex pheromones are pivotal for insect reproduction. However, the mechanism of sex pheromone communication remains enigmatic in hymenopteran parasitoids. Here we have identified the sex pheromone and elucidated the olfactory basis of sex pheromone communication in Campoletis chlorideae (Ichneumonidae), a solitary larval endoparasitoid of over 30 lepidopteran pests. Using coupled gas chromatography-electroantennogram detection, we identified two female-derived pheromone components, tetradecanal (14:Ald) and 2-heptadecanone (2-Hep) (1:4.6), eliciting strong antennal responses from males but weak responses from females. We observed that males but not females were attracted to both single components and the blend. The hexane-washed female cadavers failed to arouse males, and replenishing 14:Ald and 2-Hep could partially restore the sexual attraction of males. We further expressed six C. chlorideae male-biased odorant receptors in Drosophila T1 neurons and found that CchlOR18 and CchlOR47 were selectively tuned to 14:Ald and 2-Hep, respectively. To verify the biological significance of this data, we knocked down CchlOR18 and CchlOR47 individually or together in vivo and show that the attraction of C. chlorideae to their respective ligands was abolished. Moreover, the parasitoids defective in either of the receptors were less likely to court and copulate. Finally, we show that the sex pheromone and (Z)-jasmone, a potent female attractant, can synergistically affect behaviors of virgin males and virgin females and ultimately increase the parasitic efficiency of C. chlorideae. Our study provides new insights into the molecular mechanism of sex pheromone communication in C. chlorideae that may permit manipulation of parasitoid behavior for pest control.


Asunto(s)
Receptores Odorantes , Atractivos Sexuales , Masculino , Animales , Insectos , Comunicación , Feromonas , Drosophila
16.
Genomics ; 116(5): 110889, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901654

RESUMEN

Cholangiocarcinoma (CCA) is widely noted for its high degree of malignancy, rapid progression, and limited therapeutic options. This study was carried out on transcriptome data of 417 CCA samples from different anatomical locations. The effects of lipid metabolism related genes and immune related genes as CCA classifiers were compared. Key genes were derived from MVI subtypes and better molecular subtypes. Pathways such as epithelial mesenchymal transition (EMT) and cell cycle were significantly activated in MVI-positive group. CCA patients were classified into three (four) subtypes based on lipid metabolism (immune) related genes, with better prognosis observed in lipid metabolism-C1, immune-C2, and immune-C4. IPTW analysis found that the prognosis of lipid metabolism-C1 was significantly better than that of lipid metabolism-C2 + C3 before and after correction. KRT16 was finally selected as the key gene. And knockdown of KRT16 inhibited proliferation, migration and invasion of CCA cells.

17.
BMC Genomics ; 25(1): 92, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254015

RESUMEN

BACKGROUND: Gorals Naemorhedus resemble both goats and antelopes, which prompts much debate about the intragenus species delimitation and phylogenetic status of the genus Naemorhedus within the subfamily Caprinae. Their evolution is believed to be linked to the uplift of the Qinghai-Tibet Plateau (QTP). To better understand its phylogenetics, the genetic information is worth being resolved. RESULTS: Based on a sample from the eastern margin of QTP, we constructed the first reference genome for Himalayan goral Naemorhedus goral, using PacBio long-read sequencing and Hi-C technology. The 2.59 Gb assembled genome had a contig N50 of 3.70 Mb and scaffold N50 of 106.66 Mb, which anchored onto 28 pseudo chromosomes. A total of 20,145 protein-coding genes were predicted in the assembled genome, of which 99.93% were functionally annotated. Phylogenetically, the goral was closely related to muskox on the mitochondrial genome level and nested into the takin-muskox clade on the genome tree, rather than other so-called goat-antelopes. The cladogenetic event among muskox, takin and goral occurred sequentially during the late Miocene (~ 11 - 5 Mya), when the QTP experienced a third dramatic uplift with consequent profound changes in climate and environment. Several chromosome fusions and translocations were observed between goral and takin/muskox. The expanded gene families in the goral genome were mainly related to the metabolism of drugs and diseases, so as the positive selected genes. The Ne of goral continued to decrease since ~ 1 Mya during the Pleistocene with active glaciations. CONCLUSION: The high-quality goral genome provides insights into the evolution and valuable information for the conservation of this threatened group.


Asunto(s)
Antílopes , Animales , Antílopes/genética , Filogenia , Cabras/genética , Reordenamiento Génico , Cromosomas
18.
EMBO J ; 39(18): e104365, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32696520

RESUMEN

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Asunto(s)
Folículo Piloso/enzimología , Sirtuinas/metabolismo , Células Madre/enzimología , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Ciclosporina/farmacología , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Sirtuinas/genética
19.
Clin Gastroenterol Hepatol ; 22(6): 1210-1216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38309492

RESUMEN

BACKGROUND & AIMS: Previous studies confirm vonoprazan-amoxicillin effectiveness for Helicobacter pylori. This study aims to investigate vonoprazan with varying amoxicillin dose and duration. METHODS: This multicenter, prospective, randomized controlled, noninferiority trial enrolled patients with treatment naive H pylori infection from 5 clinical centers. Eligible participants were randomly assigned to H-VA-10 (vonoprazan 20 mg twice a day (b.i.d.) + amoxicillin 750 mg 4 times a day, 10 days), L-VA-10 (vonoprazan 20 mg b.i.d. + amoxicillin 1000 mg b.i.d, 10 days), and H-VA-14 (vonoprazan 20 mg b.i.d + amoxicillin 750 mg 4 times a day, 14 days) in a 1:1:1 ratio. The eradication rate was assessed using the 13C-urea breath test at least 28 days after treatment. RESULTS: Of the 623 eligible patients, 516 patients were randomized. In both the intention-to-treat and per-protocol analyses, eradication rates were comparable between H-VA-10 and H-VA-14 groups (86.6% vs 89.5% and 90.9% vs 94.5%, P = .021 and .013 for noninferiority, respectively). However, eradication rates were significantly lower in the L-VA-10 group than the H-VA-14 group (79.7% vs 89.5% and 82.0% vs 94.5%, P = .488 and .759, respectively). Rates of study withdrawal, loss to follow-up, and adverse events were similar across study groups. CONCLUSIONS: H-VA-10 and H-VA-14 regimens provide satisfactory efficacy for H pylori infection, and the L-VA-10 regimen was inferior. CLINICALTRIALS: gov number: NCT05719831.


Asunto(s)
Amoxicilina , Antibacterianos , Quimioterapia Combinada , Infecciones por Helicobacter , Helicobacter pylori , Pirroles , Sulfonamidas , Humanos , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos , Infecciones por Helicobacter/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Pirroles/administración & dosificación , Pirroles/efectos adversos , Estudios Prospectivos , Amoxicilina/administración & dosificación , Amoxicilina/efectos adversos , Helicobacter pylori/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Resultado del Tratamiento , Anciano , Adulto , Inhibidores de la Bomba de Protones/administración & dosificación , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/uso terapéutico , Esquema de Medicación
20.
BMC Med ; 22(1): 96, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443977

RESUMEN

BACKGROUND: There is a lack of effective therapeutic strategies for amyotrophic lateral sclerosis (ALS); therefore, drug repurposing might provide a rapid approach to meet the urgent need for treatment. METHODS: To identify therapeutic targets associated with ALS, we conducted Mendelian randomization (MR) analysis and colocalization analysis using cis-eQTL of druggable gene and ALS GWAS data collections to determine annotated druggable gene targets that exhibited significant associations with ALS. By subsequent repurposing drug discovery coupled with inclusion criteria selection, we identified several drug candidates corresponding to their druggable gene targets that have been genetically validated. The pharmacological assays were then conducted to further assess the efficacy of genetics-supported repurposed drugs for potential ALS therapy in various cellular models. RESULTS: Through MR analysis, we identified potential ALS druggable genes in the blood, including TBK1 [OR 1.30, 95%CI (1.19, 1.42)], TNFSF12 [OR 1.36, 95%CI (1.19, 1.56)], GPX3 [OR 1.28, 95%CI (1.15, 1.43)], TNFSF13 [OR 0.45, 95%CI (0.32, 0.64)], and CD68 [OR 0.38, 95%CI (0.24, 0.58)]. Additionally, we identified potential ALS druggable genes in the brain, including RESP18 [OR 1.11, 95%CI (1.07, 1.16)], GPX3 [OR 0.57, 95%CI (0.48, 0.68)], GDF9 [OR 0.77, 95%CI (0.67, 0.88)], and PTPRN [OR 0.17, 95%CI (0.08, 0.34)]. Among them, TBK1, TNFSF12, RESP18, and GPX3 were confirmed in further colocalization analysis. We identified five drugs with repurposing opportunities targeting TBK1, TNFSF12, and GPX3, namely fostamatinib (R788), amlexanox (AMX), BIIB-023, RG-7212, and glutathione as potential repurposing drugs. R788 and AMX were prioritized due to their genetic supports, safety profiles, and cost-effectiveness evaluation. Further pharmacological analysis revealed that R788 and AMX mitigated neuroinflammation in ALS cell models characterized by overly active cGAS/STING signaling that was induced by MSA-2 or ALS-related toxic proteins (TDP-43 and SOD1), through the inhibition of TBK1 phosphorylation. CONCLUSIONS: Our MR analyses provided genetic evidence supporting TBK1, TNFSF12, RESP18, and GPX3 as druggable genes for ALS treatment. Among the drug candidates targeting the above genes with repurposing opportunities, FDA-approved drug-R788 and AMX served as effective TBK1 inhibitors. The subsequent pharmacological studies validated the potential of R788 and AMX for treating specific ALS subtypes through the inhibition of TBK1 phosphorylation.


Asunto(s)
Aminopiridinas , Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Reposicionamiento de Medicamentos , Análisis de la Aleatorización Mendeliana , Proteínas Serina-Treonina Quinasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA