Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(25): e2309906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221704

RESUMEN

On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.

2.
Ecotoxicol Environ Saf ; 274: 116147, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460405

RESUMEN

Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.


Asunto(s)
Arsénico , Microbiota , Ratones , Humanos , Animales , Arsénico/toxicidad , Ratones Endogámicos C57BL , Hígado , Glutatión , Metabolismo de los Lípidos
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339180

RESUMEN

To investigate the mechanism of aquatic pathogens in quorum sensing (QS) and decode the signal transmission of aquatic Gram-negative pathogens, this paper proposes a novel method for the intelligent matching identification of eight quorum signaling molecules (N-acyl-homoserine lactones, AHLs) with similar molecular structures, using terahertz (THz) spectroscopy combined with molecular dynamics simulation and spectral similarity calculation. The THz fingerprint absorption spectral peaks of the eight AHLs were identified, attributed, and resolved using the density functional theory (DFT) for molecular dynamics simulation. To reduce the computational complexity of matching recognition, spectra with high peak matching values with the target were preliminarily selected, based on the peak position features of AHL samples. A comprehensive similarity calculation (CSC) method using a weighted improved Jaccard similarity algorithm (IJS) and discrete Fréchet distance algorithm (DFD) is proposed to calculate the similarity between the selected spectra and the targets, as well as to return the matching result with the highest accuracy. The results show that all AHL molecular types can be correctly identified, and the average quantization accuracy of CSC is 98.48%. This study provides a theoretical and data-supported foundation for the identification of AHLs, based on THz spectroscopy, and offers a new method for the high-throughput and automatic identification of AHLs.


Asunto(s)
Acil-Butirolactonas , Espectroscopía de Terahertz , Acil-Butirolactonas/química , Simulación de Dinámica Molecular , Percepción de Quorum , Estructura Molecular , Lactonas
4.
Angew Chem Int Ed Engl ; : e202405904, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960870

RESUMEN

Transformation of lignin to syngas can turn waste into treasure yet remains a tremendous challenge because of its naturally evolved stubborn structure. In this work, light-driven reforming of natural lignin in water for green syngas production is explored using Pt-decorated InGaN nanowires. Syngas is  yielded from the continuous evolution of •CH3 and •OH from photocatalytic reforming of lignin in water. Together with the superior optoelectronic attributes of Pt-decorated InGaN nanowires, the evolution rate of syngas approaches to 43.4 mol·g-1·h-1 with tunable H2/CO ratios and a remarkable turnover number (TON) of 150, 543mol syngas per mol Pt. Notably, the architecture demonstrates a high light efficiency of 12.1% for syngas generation under focused light without any extra thermal input. Outdoor test ascertains the viability of producing syngas with the only inputs of natural lignin, water, and sunlight, thus presenting a low-carbon route for synthesizing transportation fuels and value-added chemicals.

5.
Angew Chem Int Ed Engl ; 63(16): e202400011, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38409577

RESUMEN

Light-driven hydrogen production from biomass derivatives offers a path towards carbon neutrality. It is often however operated with the limitations of sluggish kinetics and severe coking. Herein, a disruptive air-promoted strategy is explored for efficient and durable light-driven hydrogen production from ethanol over a core/shell Cr2O3@GaN nanoarchitecture. The correlative computational and experimental investigations show ethanol is energetically favorable to be adsorbed on the Cr2O3@GaN interface, followed by dehydrogenation toward acetaldehyde and protons by photoexcited holes. The released protons are then consumed for H2 evolution by photogenerated electrons. Afterward, O2 can be evolved into active oxygen species and promote the deprotonation and C-C cleavage of the key C2 intermediate, thus significantly lowering the reaction energy barrier of hydrogen evolution and removing the carbon residual with inhibited overoxidation. Consequently, hydrogen is produced at a high rate of 76.9 mole H2 per gram Cr2O3@GaN per hour by only feeding ethanol, air, and light, leading to the achievement of a turnover number of 266,943,000 mole H2 per mole Cr2O3 over a long-term operation of 180 hours. Notably, an unprecedented light-to-hydrogen efficiency of 17.6 % is achieved under concentrated light illumination. The simultaneous generation of aldehyde from ethanol dehydrogenation enables the process more economically promising.

6.
J Environ Manage ; 325(Pt A): 116438, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240641

RESUMEN

In recent years, global warming has become an important topic of public concern. As one of the most promising carbon capture technologies, solid amine adsorbents have received a lot of attention because of their high adsorption capacity, excellent selectivity, and low energy cost, which is committed to sustainable development. The preparation methods and support materials can influence the thermal stability and adsorption capacity of solid amine adsorbents. As a supporting material, it needs to meet the requirements of high pore volume and abundant hydroxyl groups. Industrial and biomass waste are expected to be a novel and cheap raw material source, contributing both carbon dioxide capture and waste recycling. The applied range of solid amine adsorbents has been widened from flue gas to biogas and ambient air, which require different research focuses, including strengthening the selectivity of CO2 to CH4 or separating CO2 under the condition of the dilute concentration. Several kinetic or isotherm models have been adopted to describe the adsorption process of solid amine adsorbents, which select the pseudo-first order model, pseudo-second order model, and Langmuir isotherm model most commonly. Besides searching for novel materials from solid waste and widening the applicable gases, developing the dynamic adsorption and three-dimensional models can also be a promising direction to accelerate the development of this technology. The review has combed through the recent development and covered the shortages of previous review papers, expected to promote the industrial application of solid amine adsorbents.


Asunto(s)
Aminas , Dióxido de Carbono , Dióxido de Carbono/análisis , Adsorción , Aire , Gases
7.
J Proteome Res ; 21(11): 2736-2742, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36287021

RESUMEN

The radula is a unique foraging organ to Mollusca, which is important for their evolution and taxonomic classification. Many radulae are mineralized with metals. Although the remarkable mechanical properties of mineralized radulae are well-studied, the formation of mineralization from nonmineralized radulae is poorly understood. Taking advantage of the recently sequenced octopus and chiton genomes, we were able to identify more species-specific radular proteins by proteomics. Comparing these proteomes with the known limpet radula proteome enabled us to gain insight into the molecular components of nonmineralized and mineralized radula, highlighting that iron mineralization in the chiton radula is possibly due to the evolution of ferritins and peroxiredoxins. Through an in vitro binding assay, ferritin is shown to be important to iron accumulation into the nonmineralized radula. Moreover, radular proteomes reflect their adaption to dietary habits to some extent. The octopus radula has many scaffold modification proteins to suit flexibility while the chiton radula has abundant sugar metabolism proteins (e.g., glycosyl hydrolases) to adapt to algae feeding. This study provides a foundation for the understanding of molluscan radula formation and evolution and may inspire the synthesis of iron nanomaterials.


Asunto(s)
Proteómica , Diente , Animales , Hierro/metabolismo , Proteoma/genética , Proteoma/metabolismo , Moluscos/genética , Moluscos/química , Moluscos/metabolismo
8.
Hepatology ; 73(4): 1419-1435, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32750152

RESUMEN

BACKGROUND AND AIMS: Circular RNAs (circRNAs) and extracellular vesicles (EVs) are involved in various malignancies. We aimed to clarify the functions and mechanisms of dysregulated circRNAs in the cells and EVs of cholangiocarcinoma (CCA). APPROACH AND RESULTS: CircRNA microarray was used to identify circRNA expression profiles in CCA tissues and bile-derived EVs (BEVs). CCA-associated circRNA 1 (circ-CCAC1) expression was measured by quantitative real-time PCR. The clinical importance of circ-CCAC1 was analyzed by receiver operating characteristic curves, Fisher's exact test, Kaplan-Meier plots, and Cox regression model. The functions of circ-CCAC1 and exosomal circ-CCAC1 were explored in CCA cells and human umbilical vein endothelial cells (HUVECs), respectively. Different animal models were used to verify the in vitro results. RNA sequencing, bioinformatics, RNA immunoprecipitation, RNA pulldown, chromatin immunoprecipitation followed by sequencing, and luciferase reporter assays were used to determine the regulatory networks of circ-CCAC1 in CCA cells and HUVECs. Circ-CCAC1 levels were increased in cancerous bile-resident EVs and tissues. The diagnostic and prognostic values of circ-CCAC1 were identified in patients with CCA. For CCA cells, circ-CCAC1 increased cell progression by sponging miR-514a-5p to up-regulate Yin Yang 1 (YY1). Meanwhile, YY1 directly bound to the promoter of calcium modulating ligand to activate its transcription. Moreover, circ-CCAC1 from CCA-derived EVs was transferred to endothelial monolayer cells, disrupting endothelial barrier integrity and inducing angiogenesis. Mechanistically, circ-CCAC1 increased cell leakiness by sequestering enhancer of zeste homolog 2 in the cytoplasm, thus elevating SH3 domain-containing GRB2-like protein 2 expression to reduce the levels of intercellular junction proteins. In vivo studies further showed that increased circ-CCAC1 levels in circulating EVs and cells accelerated both CCA tumorigenesis and metastasis. CONCLUSIONS: Circ-CCAC1 plays a vital role in CCA tumorigenesis and metastasis and may be an important biomarker/therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/sangre , Carcinogénesis/metabolismo , Colangiocarcinoma/sangre , Endotelio Vascular/metabolismo , Neovascularización Patológica/metabolismo , ARN Circular/sangre , ARN Circular/genética , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Coledocolitiasis/sangre , Coledocolitiasis/genética , Coledocolitiasis/patología , Vesículas Extracelulares/metabolismo , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Desnudos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección , Carga Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Environ Manage ; 319: 115656, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810584

RESUMEN

Biodrying is a promising method that produces bio-stabilized output with minimum pretreatment requirements. In this study, a hot-air supply system was added to the traditional biodrying process for kitchen waste, which showed significant reduction in moisture content in 5 days (maximum reduction of 37.45%). A series of experiments was conducted to optimize the hot-air biodrying system utilizing different aeration rates, temperatures, and mixing ratios of feedstock to bulking agents. The results showed that a 65 °C aeration temperature led to the highest water removal rate and low volatile solids consumption rate, with the biodrying index reaching 4.9 g water per gram of volatile solids. On the other hand, evaluation of the overall biodrying efficiency based on the weight loss and bio-stabilization showed that intermittent aeration temperature at 55 °C performed best, offering suitable conditions for water evaporation and bio-degradation. In combination with a flow rate of 0.8 L/kg*min and 1:1 mixing ratio, these conditions resulted in the maximum volatile solids consumption of 26.26% in 5 days. The volatile solids consumption and 34.47% water removal rate of the trial had contributed to a total of 64.13% weight loss. The weight loss was even higher than that of a conventional biodrying system which was conducted for more than 14 days.


Asunto(s)
Eliminación de Residuos , Alimentos , Humanos , Eliminación de Residuos/métodos , Temperatura , Agua , Pérdida de Peso
10.
Entropy (Basel) ; 24(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35626515

RESUMEN

Energy storage is an important adjustment method to improve the economy and reliability of a power system. Due to the complexity of the coupling relationship of elements such as the power source, load, and energy storage in the microgrid, there are problems of insufficient performance in terms of economic operation and efficient dispatching. In view of this, this paper proposes an energy storage configuration optimization model based on reinforcement learning and battery state of health assessment. Firstly, a quantitative assessment of battery health life loss based on deep learning was performed. Secondly, on the basis of considering comprehensive energy complementarity, a two-layer optimal configuration model was designed to optimize the capacity configuration and dispatch operation. Finally, the feasibility of the proposed method in microgrid energy storage planning and operation was verified by experimentation. By integrating reinforcement learning and traditional optimization methods, the proposed method did not rely on the accurate prediction of the power supply and load and can make decisions based only on the real-time information of the microgrid. In this paper, the advantages and disadvantages of the proposed method and existing methods were analyzed, and the results show that the proposed method can effectively improve the performance of dynamic planning for energy storage in microgrids.

11.
Entropy (Basel) ; 24(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35885188

RESUMEN

The breakthrough of wireless energy transmission (WET) technology has greatly promoted the wireless rechargeable sensor networks (WRSNs). A promising method to overcome the energy constraint problem in WRSNs is mobile charging by employing a mobile charger to charge sensors via WET. Recently, more and more studies have been conducted for mobile charging scheduling under dynamic charging environments, ignoring the consideration of the joint charging sequence scheduling and charging ratio control (JSSRC) optimal design. This paper will propose a novel attention-shared multi-agent actor-critic-based deep reinforcement learning approach for JSSRC (AMADRL-JSSRC). In AMADRL-JSSRC, we employ two heterogeneous agents named charging sequence scheduler and charging ratio controller with an independent actor network and critic network. Meanwhile, we design the reward function for them, respectively, by considering the tour length and the number of dead sensors. The AMADRL-JSSRC trains decentralized policies in multi-agent environments, using a centralized computing critic network to share an attention mechanism, and it selects relevant policy information for each agent at every charging decision. Simulation results demonstrate that the proposed AMADRL-JSSRC can efficiently prolong the lifetime of the network and reduce the number of death sensors compared with the baseline algorithms.

12.
Plant Physiol ; 182(4): 2047-2064, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32029522

RESUMEN

Plant male gametogenesis is a coordinated effort involving both reproductive tissues and sporophytic tissues, in which lipid metabolism plays an essential role. Although GDSL esterases/lipases have been well known as key enzymes for many plant developmental processes and stress responses, their functions in reproductive development remain unclear. Here, we report the identification of a rice male sterile2 (rms2) mutant in rice (Oryza sativa), which is completely male sterile due to the defects in tapetum degradation, cuticle formation in sporophytic tissues, and impaired exine and central vacuole development in pollen grains. RMS2 was map-based cloned as an endoplasmic reticulum-localized GDSL lipase gene, which is predominantly transcribed during early anther development. In rms2, a three-nucleotide deletion and one base substitution (TTGT to A) occurred within the GDSL domain, which reduced the lipid hydrolase activity of the resulting protein and led to significant changes in the content of 16 lipid components and numerous other metabolites, as revealed by a comparative metabolic analysis. Furthermore, RMS2 is directly targeted by the male fertility regulators Undeveloped Tapetum1 and Persistent Tapetal Cell1 both in vitro and in vivo, suggesting that RMS2 may serve as a key node in the rice male fertility regulatory network. These findings shed light on the function of GDSLs in reproductive development and provide a promising gene resource for hybrid rice breeding.


Asunto(s)
Lipasa/metabolismo , Oryza/metabolismo , Oryza/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Lipasa/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción/genética , Reproducción/fisiología
13.
Endocr Pract ; 27(10): 1004-1010, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34102307

RESUMEN

OBJECTIVE: To identify and understand parathyroid lesions of patients with primary hyperparathyroidism (PHPT) more accurately under ultrasound. METHODS: This retrospective study involved 423 adult patients with PHPT with a single parathyroid nodule and positive parathyroid ultrasonography between 2018 and 2019. The clinical characteristics of the study patients and histopathologic sections were reviewed. RESULTS: According to the main grayscale echogenicity features of parathyroid nodules, 423 cases were divided into groups: iso-hyperechogenicity solid (61/423), hypoechogenicity solid (304/423), and mixed-echogenicity cyst-solid (58/423) groups. Comparison among the 3 groups showed that the iso-hyperechogenicity group included more asymptomatic patients with PHPT and fewer patients with severe symptoms like bone fractures (P < .05). The mixed-echogenicity group showed higher median serum parathyroid hormone (PTH) and serum calcium levels and larger lesion sizes (P < .05), and the iso-hyperechogenicity group showed the lowest median serum PTH level. No difference in lesion size was noted between the 2 solid groups, but the median serum PTH level in the hypoechogenicity group was higher than that in the iso-hyperechogenicity group (P < .05). According to histopathology, the hypoechogenic area of the samples may contain more functional components (chief cells), whereas the iso-hyperechogenic area has more nonfunctional components (eg, lipocytes and connective tissues). CONCLUSION: The PHPT nodules distinguished by ultrasound echogenicity features showed different histopathologic components, reflected by different clinical characteristics of the patients with PHPT.


Asunto(s)
Hiperparatiroidismo Primario , Calcio , Humanos , Hiperparatiroidismo Primario/diagnóstico por imagen , Glándulas Paratiroides/diagnóstico por imagen , Hormona Paratiroidea , Estudios Retrospectivos , Ultrasonografía
14.
Ecotoxicol Environ Saf ; 226: 112834, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34619471

RESUMEN

BACKGROUND: Fine particle pollution, specifically pollution by fine particulate matter (PM2.5), remains a significant concern in developing countries and plays an important role in the development and progression of respiratory diseases. Increasing evidences have demonstrated that long non-coding RNAs (lncRNAs) may act as vital molecules by binding to specific RNA-binding protein (RBP); however, their relationship with PM2.5 pollution is largely unexplored. OBJECTIVE: We investigated the association between lncRNA and respiratory system inflammation caused by PM2.5. METHODS: PM2.5 components were detected by gas chromatography-mass spectrometry (GC-MS), inductively coupled plasma-mass spectrometry (ICP-MS), and ionic chromatography. We established an inflammation model of PM2.5-induced toxicity in vivo (male and female SD rats, 0, 25, 50 and 100 mg/k PM2.5, 1, 7 and 14 days, single non-invasive tracheal instillation) and in vitro (rat alveolar macrophage cell line (NR8383), 0, 50, 100, 200, 400 µM PM2.5 for 24, 48, and 72 h). lncRNA high-throughput sequencing (lncRNA-seq) was used to investigate lncRNA profiles in PM2.5-treated NR8383 cells, and RNA interference (RNAi) was applied to explore the function of the target lncRNA. The mechanisms associated with specific lncRNAs were explored using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) and western blot. RESULTS: PM2.5-treated NR8383 cells and SD rats exhibited respiratory inflammation. lncRNA AABR07005593.1 was a pro-inflammatory factor that regulated IL-6 levels. Mechanistically, ChIRP-MS and western blot analyses revealed that highly expressed lncRNA AABR07005593.1 interacted with MCCC1 to involve in the activation of NF-κB pathway, and ultimately promoted the expression of IL-6. CONCLUSION: This study demonstrated that PM2.5 induced inflammation in vivo and in vitro. Furthermore, lncRNA AABR07005593.1 bound to MCCC1 to potentiated IL-6 expression. Therefore, lncRNA AABR07005593.1 may act as a potential biomarker for PM2.5 inflammation.


Asunto(s)
ARN Largo no Codificante , Animales , Femenino , Interleucina-6/genética , Masculino , FN-kappa B/genética , Material Particulado/toxicidad , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley
15.
BMC Surg ; 21(1): 266, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044830

RESUMEN

BACKGROUND: This study aimed to investigate the anesthetic effect of butorphanol with different doses in patients undergoing gastroscopy and colonoscopy. METHODS: 480 patients undergoing gastroscopy and colonoscopy were recruited and randomly divided into four groups to receive different doses of butorphanol (Group A = 2.5 µg/kg, Group B = 5 µg/kg, Group C = 7.5 µg/kg and Group D = 10 µg/kg). Butorphanol was administered 5 min before propofol infusion. The primary outcome was the incidence of body movement. Secondary outcomes were postoperative recovery time, length of stay in the Post-Anesthesia Care Unit (PACU), the total dose of propofol, and the incidence of intraoperative hypoxemia, propofol injection pain, cough, postoperative nausea and vomiting, drowsiness, and dizziness. RESULTS: The incidence of body movement and the dose of propofol in Group C and D were lower than those in Group A and B (P < 0.05). The incidence and intensity of propofol injection pain and the incidence of cough in Group B, C, and D were lower than those in Group A (P < 0.05). The length of stay in PACU and the incidence of postoperative drowsiness and dizziness were higher in Group D than in Group A, B, and C (P < 0.05). CONCLUSION: Intravenous pre-injection of 7.5 µg/kg butorphanol with propofol can be the optimal dosage for patients undergoing gastroscopy and colonoscopy. TRIAL REGISTRATION: Trial registration: Chinese Clinical Trial Registry, ChiCTR2000031506. Registered 3 April 2020-Retrospectively registered, http://www.medresman.org.cn .


Asunto(s)
Anestésicos , Propofol , Butorfanol , Colonoscopía , Gastroscopía , Humanos
16.
J Basic Microbiol ; 61(6): 506-523, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33955034

RESUMEN

Prodigiosin is a natural red pigment derived primarily from secondary metabolites of microorganisms, especially Serratia marcescens. It can also be chemically synthesized. Prodigiosin has been proven to have antitumor, antibacterial, antimalaria, anti-insect, antialgae, and immunosuppressive activities, and is gaining increasing important in the global market because of its great potential application value in clinical medicine development, environmental treatment, preparation of food additives, and so on. Due to the low efficiency of prodigiosin chemical synthesis, high-level prodigiosin of production by microorganisms are necessary for prodigiosin applications. In this paper, the production of prodigiosin by microorganism in recent decades is reviewed. The methods and strategies for increasing the yield of prodigiosin are discussed from the aspects of medium composition, additives, factors affecting production conditions, strain modification, and fermentation methods.


Asunto(s)
Prodigiosina/biosíntesis , Vías Biosintéticas , Medios de Cultivo , Fermentación , Serratia marcescens/genética , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/metabolismo
17.
BMC Oral Health ; 21(1): 358, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34284763

RESUMEN

BACKGROUND: To evaluate the root anatomy, root canal morphology and the anatomical relationship between the roots and maxillary sinus of maxillary second premolars by CBCT in a western Chinese population. METHODS: A total of 1118 CBCT scans of the maxillary second premolars were collected from West China Hospital of Stomatology, Sichuan University. Information below were measured on axial, coronal and sagittal sections, recorded and evaluated properly: the number of roots and canals, the morphology of canal system classified by Vertucci standard, the inter-orifice distance of canal orifices, the curvature of each canal and the distance from root tip to maxillary sinus floor. RESULTS: Among the 1118 teeth, 94.2% (1053) are single-rooted and 55.1% (616) have one canal. Type I (55.1%) is the commonest root canal morphology followed by Type II (31.9%). The mean inter-orifice distance (IOD) for multi-canal teeth ranging from 2.72 ± 0.32 to 3.41 ± 0.11 mm. Of 1622 canals, 38.8% (630) curvature are mesiodistal and 30.9% (501) are straight canals. The distance from root tip to maxillary sinus floor increased with age and the mean distance of single-rooted ones is 2.47 ± 3.45 mm. CONCLUSIONS: All kinds of canal morphology category can be detected in maxillary second premolars. The IOD might be a predictable factor for root canal morphology. Roots of maxillary second premolars are related to maxillary sinus which should be treated carefully.


Asunto(s)
Elevación del Piso del Seno Maxilar , Tomografía Computarizada de Haz Cónico Espiral , Diente Premolar/diagnóstico por imagen , China , Tomografía Computarizada de Haz Cónico , Cavidad Pulpar/diagnóstico por imagen , Humanos , Maxilar/diagnóstico por imagen , Seno Maxilar/diagnóstico por imagen , Raíz del Diente/diagnóstico por imagen
18.
Entropy (Basel) ; 23(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34682035

RESUMEN

Battery energy storage technology is an important part of the industrial parks to ensure the stable power supply, and its rough charging and discharging mode is difficult to meet the application requirements of energy saving, emission reduction, cost reduction, and efficiency increase. As a classic method of deep reinforcement learning, the deep Q-network is widely used to solve the problem of user-side battery energy storage charging and discharging. In some scenarios, its performance has reached the level of human expert. However, the updating of storage priority in experience memory often lags behind updating of Q-network parameters. In response to the need for lean management of battery charging and discharging, this paper proposes an improved deep Q-network to update the priority of sequence samples and the training performance of deep neural network, which reduces the cost of charging and discharging action and energy consumption in the park. The proposed method considers factors such as real-time electricity price, battery status, and time. The energy consumption state, charging and discharging behavior, reward function, and neural network structure are designed to meet the flexible scheduling of charging and discharging strategies, and can finally realize the optimization of battery energy storage benefits. The proposed method can solve the problem of priority update lag, and improve the utilization efficiency and learning performance of the experience pool samples. The paper selects electricity price data from the United States and some regions of China for simulation experiments. Experimental results show that compared with the traditional algorithm, the proposed approach can achieve better performance in both electricity price systems, thereby greatly reducing the cost of battery energy storage and providing a stronger guarantee for the safe and stable operation of battery energy storage systems in industrial parks.

19.
Cancer Cell Int ; 20: 324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694946

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. METHODS: The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. RESULTS: Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. CONCLUSIONS: The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.

20.
Ecotoxicol Environ Saf ; 196: 110476, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278143

RESUMEN

Several studies have demonstrated that PM2.5 inhalation is associated with an increased risk of cerebrovascular disease (CVD), in which inflammation plays an important role. The mechanisms of this disease are not fully understood to date. Long non-coding RNAs (lncRNAs) are involved in many pathophysiological processes, such as immune responses; however, their functions associated with inflammation are largely unexplored. High-throughput sequencing assay and obtained numerous lncRNAs that altered the expression in response to PM2.5 treatment in HUVECs. NONHSAT247851.1 was also identified, which was significantly up-regulated to control the expression of immune response genes. Mechanistically, the results indicated that NONHSAT247851.1 knockdown reduced the expression of IL1ß. In study, we investigated NONHSAT247851.1 as a promoter in regulating immune response genes via binding with raf-1 to regulate the phosphorylation level of p65 protein in HUVECs. The data collected suggests that NONHSAT247851.1 regulates inflammation via interaction with raf-1 to control the inflammatory expression in PM2.5 exposure.


Asunto(s)
Contaminantes Ambientales/toxicidad , Inflamación/inducido químicamente , Material Particulado/toxicidad , Proteínas Proto-Oncogénicas c-raf/genética , ARN Largo no Codificante/genética , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/genética , Interleucina-1beta/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA