Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998278

RESUMEN

The effect of hydrostatic pressure and cation type on chloride ion transport in marine underwater concrete cannot be ignored. The study of the chloride ion transport behavior of concrete under the effect of hydrostatic pressure and cation type coupling can provide a basis for durability design and the protection of marine concrete. In this work, the chloride ion transport behavior of marine concrete in four common chloride salt solutions under different hydrostatic pressures is studied by a hydrostatic pressure test device developed by the authors. The results show that hydrostatic pressure and its action time significantly influence the chloride ion transport behavior in marine concrete; the higher the hydrostatic pressure of concrete, the faster the chloride ion transport rate. The longer the time, the more chloride ions accumulated in the same position, and the farther the chloride ion transport distance. Cation type has a certain influence on the transport process of chloride ions. Under the same test conditions, the chloride ion transport rate in a divalent cation solution is about 5% higher than that in a monovalent cation solution. The results also show that the chloride ion binding capacity under hydrostatic pressure is only 10~20% of that under natural diffusion. Using the test results, a predictive model of a chloride ion apparent transport coefficient based on the hydrostatic pressure and hydrostatic pressure action time corrected by a cation type influence coefficient is established.

2.
Materials (Basel) ; 17(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38399173

RESUMEN

Red mud (RM) and Yellow River sediment (YRS) are challenging to handle as waste materials. In this study, RM with geopolymer and heavy metal adsorption characteristics was combined with YRS and ground granulated blast furnace slag (GGBS) to develop a porous geopolymer with high strength and high adsorption performance. A geopolymer cementitious material with high strength was prepared using high temperature water bath curing of 90 °C and different dosages of YRS, and a porous geopolymer concrete was further prepared. The compressive strength, fluidity and setting time of geopolymer cementitious materials were tested, and the compressive strength, porosity and permeability of porous geopolymer concrete were also tested. The environmental impact assessment of geopolymer cementitious materials was further conducted. The hydration products and microstructure of geopolymer gel materials were analyzed by XRD, SEM and FT-IR tests. The results show that the addition of YRS can effectively prolong the setting time of the geopolymer cementitious material, and the enhancement rate is as high as 150% compared with the geopolymer cementitious materials without the addition of YRS. An appropriate amount of YRS can improve the compressive strength of the geopolymer cementitious materials, and its early compressive strength can be further improved under the high temperature water bath curing of 90 °C, and the compressive strength at an age of 3 d can be up to 86.7 MPa. Meanwhile, the compressive strength of porous geopolymer concrete at an age of 28 d is up to 28.1 MPa. YRS can participate in geopolymer reactions, and high temperature water bath curing can promote the reaction degree. Curing method and YRS dosages have little effect on the porosity and permeability of the porous geopolymer concrete. The porous geopolymer has a good heavy metal adsorption effect, and the alkaline pH values can be gradually diluted to neutral.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA