Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(5): e0009324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591899

RESUMEN

Feline parvovirus (FPV) infection is highly fatal in felines. NS1, which is a key nonstructural protein of FPV, can inhibit host innate immunity and promote viral replication, which is the main reason for the severe pathogenicity of FPV. However, the mechanism by which the NS1 protein disrupts host immunity and regulates viral replication is still unclear. Here, we identified an FPV M1 strain that is regulated by the NS1 protein and has more pronounced suppression of innate immunity, resulting in robust replication. We found that the neutralization titer of the FPV M1 strain was significantly lower than that of the other strains. Moreover, FPV M1 had powerful replication ability, and the FPV M1-NS1 protein had heightened efficacy in repressing interferon-stimulated genes (ISGs) expression. Subsequently, we constructed an FPV reverse genetic system, which confirmed that the N588 residue of FPV M1-NS1 protein is a key amino acid that bolsters viral proliferation. Recombinant virus containing N588 also had stronger ability to inhibit ISGs, and lower ISGs levels promoted viral replication and reduced the neutralization titer of the positive control serum. Finally, we confirmed that the difference in viral replication was abolished in type I IFN receptor knockout cell lines. In conclusion, our results demonstrate that the N588 residue of the NS1 protein is a critical amino acid that promotes viral proliferation by increasing the inhibition of ISGs expression. These insights provide a reference for studying the relationship between parvovirus-mediated inhibition of host innate immunity and viral replication while facilitating improved FPV vaccine production.IMPORTANCEFPV infection is a viral infectious disease with the highest mortality rate in felines. A universal feature of parvovirus is its ability to inhibit host innate immunity, and its ability to suppress innate immunity is mainly accomplished by the NS1 protein. In the present study, FPV was used as a viral model to explore the mechanism by which the NS1 protein inhibits innate immunity and regulates viral replication. Studies have shown that the FPV-NS1 protein containing the N588 residue strongly inhibits the expression of host ISGs, thereby increasing the viral proliferation titer. In addition, the presence of the N588 residue can increase the proliferation titer of the strain 5- to 10-fold without affecting its virulence and immunogenicity. In conclusion, our findings provide new insights and guidance for studying the mechanisms by which parvoviruses suppress innate immunity and for developing high-yielding FPV vaccines.


Asunto(s)
Virus de la Panleucopenia Felina , Proteínas no Estructurales Virales , Replicación Viral , Animales , Gatos , Línea Celular , Virus de la Panleucopenia Felina/genética , Virus de la Panleucopenia Felina/inmunología , Inmunidad Innata , Mutación , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/inmunología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/inmunología
2.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175184

RESUMEN

Feline calicivirus (FCV) is considered one of the major pathogens of cats worldwide and causes upper respiratory tract disease in all cats. In some cats, infection is by a highly virulent strain of FCV (vs.-FCV), which can cause severe and fatal systemic disease symptoms. At present, few antiviral drugs are approved for clinical treatment against FCV. Therefore, there is an imminent need for effective FCV antiviral agents. Here, we used observed a cytopathic effect (CPE) assay to screen 1746 traditional Chinese medicine monomer compounds and found one that can effectively inhibit FCV replication, namely, handelin, with an effective concentration (EC50) value of approximately 2.5 µM. Further study showed that handelin inhibits FCV replication via interference with heat shock protein 70 (HSP70), which is a crucial host factor and plays a positive role in regulating viral replication. Moreover, handelin and HSP70 inhibitors have broad-spectrum antiviral activity. These findings indicate that handelin is a potential candidate for the treatment of FCV infection and that HSP70 may be an important drug target.


Asunto(s)
Infecciones por Caliciviridae , Terpenos , Gatos , Animales , Evaluación Preclínica de Medicamentos , Proteínas HSP70 de Choque Térmico , Infecciones por Caliciviridae/tratamiento farmacológico , Infecciones por Caliciviridae/veterinaria
3.
BMC Vet Res ; 20(1): 80, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443948

RESUMEN

BACKGROUND: Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS: Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS: For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.


Asunto(s)
Calicivirus Felino , Animales , Gatos , Vacunas de Subunidad , Aminoácidos , Citocinas , Epítopos
4.
Artículo en Inglés | MEDLINE | ID: mdl-38877848

RESUMEN

BACKGROUND: Allergic rhinitis (AR) represents a significant global health concern that can give rise to numerous diseases and result in labor productivity. T regulatory (Treg) cells are pivotal players in the pathogenesis of AR, and their deficiencies are closely related to Prostaglandin E2 (PGE2). However, the downstream mechanisms of this relationship remain poorly understood. OBJECTIVE: This study aims to investigate the inhibitory mechanisms through which PGE2 impacts the differentiation of Treg cells. METHODS: We compared the differentiation of Treg cells from naïve CD4+ T cells of AR patients and healthy controls, with or without the presence of PGE2 by flow cytometry. Intracellular cAMP concentration, mRNA and protein levels of cyclic-AMP dependent protein kinase A (PKA), as well as their downstream target, Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ) were examined in Treg cells from AR and healthy donors. AR mouse model was established by pollen administration. RESULTS: PGE2 suppressed the differentiation of Treg cells from human naïve CD4+ T cells through the EP4 receptor. Furthermore, in AR patients and AR mouse, the expression of EP4 receptor were observed enhanced. The PGE2-EP4 signal was carried out by activating cAMP-PKA signaling pathway. Subsequently, phospholated PKA would suppress PPAR-γ expression. Treatment of Pioglitazone, a PPAR-γ agonist, was demonstrated to rescue the differentiation of Treg and help alleviate inflammation in the AR mouse model. CONCLUSION: In AR disease, the PGE2-EP4 signaling exerts an inhibitory effect on Treg differentiation by influencing the cAMP-PKA pathway and its downstream target PPAR-γ.

5.
Immunology ; 169(3): 245-259, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36814103

RESUMEN

Cysteinyl aspartate specific proteinase (caspase)-6 belongs to the caspase family and plays a vital role in mediating cell death. Under certain conditions, three pathways of programmed cell death (PCD), including apoptosis, necroptosis and pyroptosis (PANoptosis), transform one way into another, with enormous therapeutic potential. Initially, scholars reported that caspase-6 is a caspase executor that mediates apoptosis. With the ceaseless exploration of the PCD types, studies have demonstrated that caspase-6 mediates pyroptosis by regulating gasdermin D and mediates necroptosis by regulating mixed lineage kinase domain-like. By regulating PANoptosis, caspase-6 plays a crucial role in tumorigenesis in humans and mediates anti-tumour immunity. Therefore, a comprehensive understanding of caspase-6 function in cancer via PANoptosis is important for the prevention and therapy of tumours. This article summarized the function of caspase-6 in PANoptosis and its impact on cancer development, providing targets and strategies for tumour treatment.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Caspasa 6/metabolismo , Piroptosis , Caspasas/metabolismo , Caspasa 8/metabolismo
6.
J Virol ; 96(17): e0090722, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000844

RESUMEN

The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Coronavirus Felino , Farmacorresistencia Viral , Mutación , Inhibidores de Proteasas , Animales , Antivirales/farmacología , Gatos/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Coronavirus Felino/efectos de los fármacos , Coronavirus Felino/enzimología , Coronavirus Felino/genética , Farmacorresistencia Viral/genética , Inhibidores de Proteasas/farmacología
7.
Bioorg Med Chem Lett ; 85: 129237, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36924945

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and a significant risk factor for ischemic stroke and heart failure. Marketed anti-arrhythmic drugs can restore sinus rhythm, but with limited efficacy and significant toxicities, including potential to induce ventricular arrhythmia. Atrial-selective ion channel drugs are expected to restore and maintain sinus rhythm without risk of ventricular arrhythmia. One such atrial-selective channel target is GIRK1/4 (G-protein regulated inwardly rectifying potassium channel 1/4). Here we describe 14b, a potent GIRK1/4 inhibitor developed to cardiovert AF to sinus rhythm while minimizing central nervous system exposure - an issue with preceding GIRK1/4 clinical candidates.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/tratamiento farmacológico , Cardioversión Eléctrica , Atrios Cardíacos , Encéfalo
8.
BMC Plant Biol ; 22(1): 51, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35073847

RESUMEN

BACKGROUND: The Qinghai-Tibetan Plateau is experiencing rapid climate warming, which may further affect plant growth. However, little is known about the plant physiological response to climate change. RESULTS: Here, we select the Kobresia pygmaea, an important perennial Cyperaceae forage, to examine the physiological indices to temperature changes in different growing months. We determined the contents of malondialdehyde, proline, soluble sugars, superoxide dismutase, peroxidation, and catalase activity in leaves and roots of Kobresia pygmaea at 25℃, 10℃, 4℃ and 0℃ from June to September in 2020. The results showed that the content of osmotic adjustment substances in the leaves and roots of Kobresia pygmaea fluctuated greatly with experimental temperature in June and September. The superoxide dismutase activity in the leaves and roots of the four months changed significantly with temperatures. The peroxidation activity in the leaves was higher than that in the roots, while the catalase activity in leaves and roots fluctuates greatly during June, with a relative stable content in other months. Membership function analysis showed that higher temperatures were more harmful to plant leaves, and lower temperatures were more harmful to plant roots. The interaction of organs, growing season and stress temperature significantly affected the physiological indicators. CONCLUSIONS: The physiological indicators of Kobresia pygmaea can actively respond to temperature changes, and high temperature can reduce the stress resistance Kobresia pygmaea. Our findings suggest that the Kobresia pygmaea has high adaptability to climate warming in the future.


Asunto(s)
Cyperaceae/fisiología , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , China , Frío , Calor , Estaciones del Año , Tibet
9.
Pharmacol Res ; 179: 106236, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35483516

RESUMEN

Atherosclerosis is a chronic inflammatory disease and the pathological basis of many fatal cardiovascular diseases. Macrophages, the main inflammatory cells in atherosclerotic plaque, have a paradox role in disease progression. In response to different microenvironments, macrophages mainly have two polarized directions: pro-inflammatory macrophages and anti-inflammatory macrophages. More and more evidence shows that macrophage is mechanosensitive and matrix stiffness regulate macrophage phenotypes in atherosclerosis. However, the molecular mechanism of matrix stiffness regulating macrophage polarization still lacks in-depth research, which hinders the development of new anti-atherosclerotic therapies. In this review, we discuss the important role of matrix stiffness in regulating macrophage polarization through mechanical signal transduction (Hippo, Piezo, cytoskeleton, and integrin) and epigenetic mechanisms (miRNA, DNA methylation, and histone). We hope to provide a new perspective for atherosclerosis therapy by targeting matrix stiffness and macrophage polarization.


Asunto(s)
Aterosclerosis , MicroARNs , Placa Aterosclerótica , Aterosclerosis/patología , Humanos , Activación de Macrófagos , Macrófagos
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(8): 928-935, 2022 Aug 15.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-36036133

RESUMEN

OBJECTIVES: To study the mechanism of retinoic acid receptor α (RARα) signal change to regulate neurexin 1 (NRXN1) in the visual cortex and participate in the autistic-like behavior in rats with vitamin A deficiency (VAD). METHODS: The models of vitamin A normal (VAN) and VAD pregnant rats were established, and some VAD maternal and offspring rats were given vitamin A supplement (VAS) in the early postnatal period. Behavioral tests were performed on 20 offspring rats in each group at the age of 6 weeks. The three-chamber test and the open-field test were used to observe social behavior and repetitive stereotyped behavior. High-performance liquid chromatography was used to measure the serum level of retinol in the offspring rats in each group. Electrophysiological experiments were used to measure the long-term potentiation (LTP) level of the visual cortex in the offspring rats. Quantitative real-time PCR and Western blot were used to measure the expression levels of RARα, NRXN1, and N-methyl-D-aspartate receptor 1 (NMDAR1). Chromatin co-immunoprecipitation was used to measure the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene. RESULTS: The offspring rats in the VAD group had autistic-like behaviors such as impaired social interactions and repetitive stereotypical behaviors, and VAS started immediately after birth improved most of the behavioral deficits in offspring rats. The offspring rats in the VAD group had a significantly lower serum level of retinol than those in the VAN and VAS groups (P<0.05). Compared with the offspring rats in the VAN and VAS groups, the offspring rats in the VAD group had significant reductions in the mRNA and protein expression levels of NMDAR1, RARα, and NRXN1 and the LTP level of the visual cortex (P<0.05). The offspring rats in the VAD group had a significant reduction in the enrichment of RARα transcription factor in the promoter region of the NRXN1 gene in the visual cortex compared with those in the VAN and VAS groups (P<0.05). CONCLUSIONS: RARα affects the synaptic plasticity of the visual cortex in VAD rats by regulating NRXN1, thereby participating in the formation of autistic-like behaviors in VAD rats.


Asunto(s)
Trastorno Autístico , Corteza Visual , Deficiencia de Vitamina A , Animales , Femenino , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Receptor alfa de Ácido Retinoico , Vitamina A
11.
J Am Chem Soc ; 143(19): 7253-7260, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33961421

RESUMEN

Herein, we report a modular and convergent strategy for the assembly of atropisomeric o-terphenyls with 1,2-diaxes via palladium/chiral norbornene cooperative catalysis and axial-to-axial diastereoinduction. Readily available aryl iodides, 2,6-substituted aryl bromides, and potassium aryl trifluoroborates are used as the building blocks, laying the foundation for diversity-oriented synthesis of these scaffolds (46 examples). Other features include the unique axial-to-axial diastereoinduction mode, construction of two axes in a single operation, and step economy. DFT calculations are performed to rationalize the axial-to-axial diastereoinduction process. Synthetic utilities of this method in preparation of atropisomeric oligophenyls, chiral catalysts, and ligands are demonstrated.

12.
Int J Cancer ; 149(7): 1408-1420, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34028029

RESUMEN

Cysteinyl aspartate specific proteinase (Caspase)-8 has long been considered a promoter of apoptosis and part of the mechanism by which cytotoxic drugs kill cancer cells. With the continuous exploration of the types of programmed cell death, an increasing number of studies have confirmed that caspase-8 plays an important role in cancer. Recently, scholars have proposed the term "PANoptosis," which mainly includes three programmed cell death modes, namely pyroptosis, apoptosis and necroptosis. In addition to mediating endogenous apoptotic pathways, caspase-8 can also participate in the cleavage of gasdermin (GSDM) family proteins to induce pyroptosis. Furthermore, the expression of enzymatically inactive caspase-8 (C362S) can cause embryonic lethality and inflammatory tissue destruction in mice by inducing necroptosis and pyroptosis. Therefore, the activation and deletion of caspase-8 enzyme activity, as well as the knockout of the coding gene, are closely related to "PANoptosis." In addition, caspase-8 can also improve the tumor microenvironment and enhance tumor antiimmunity. Studies have shown that caspase-8 is also associated with tumor growth and invasion, angiogenesis and metastasis, therapeutic resistance and poor clinical outcomes. Therefore, it is very important to measure the cancer-promoting and anticancer effects of caspase-8 and find a balance, and to study its role in the effect of "PANoptosis" in depth. This article reviews the role of caspase-8 in "PANoptosis" in cancer to provide new strategies and targets for cancer.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Necroptosis , Neoplasias/enzimología , Neoplasias/patología , Piroptosis , Animales , Humanos , Transducción de Señal
13.
Cancer Sci ; 112(10): 3979-3994, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34252266

RESUMEN

Pyroptosis refers to the process of gasdermin (GSDM)-mediated programmed cell death (PCD). Our understanding of pyroptosis has expanded beyond cells and is known to involve extracellular responses. Recently, there has been an increasing interest in pyroptosis due to its emerging role in activating the immune system. In the meantime, pyroptosis-mediated therapies, which use the immune response to kill cancer cells, have also achieved notable success in a clinical setting. In this review, we discuss that the immune response induced by pyroptosis activation is a double-edged sword that affects all stages of tumorigenesis. On the one hand, the activation of inflammasome-mediated pyroptosis and the release of pyroptosis-produced cytokines alter the immune microenvironment and promote the development of tumors by evading immune surveillance. On the other hand, pyroptosis-produced cytokines can also collect immune cells and ignite the immune system to improve the efficiency of tumor immunotherapies. Pyroptosis is also related to some immune checkpoints, especially programmed death-1 (PD-1) or programmed death- ligand 1 (PD-L1). In this review, we mainly focus on our current understanding of the interplay between the immune system and tumors that process through pyroptosis, and debate their use as potential therapeutic targets.


Asunto(s)
Sistema Inmunológico/inmunología , Neoplasias/inmunología , Piroptosis/fisiología , Microambiente Tumoral/inmunología , Antígeno B7-H1/inmunología , Citocinas/metabolismo , Progresión de la Enfermedad , Humanos , Evasión Inmune , Inmunoterapia , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Neoplasias/etiología , Neoplasias/prevención & control , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/inmunología , Piroptosis/inmunología , Vesículas Secretoras/fisiología , Escape del Tumor/inmunología
14.
Cancer Immunol Immunother ; 70(2): 533-546, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32852602

RESUMEN

BACKGROUND: Anti-programmed death-1 (PD-1) antibody changed the treatment of non-small cell lung cancer (NSCLC), however, reliable predictive markers were lacking. We aimed to explore factors associated with response and survival, and develop predictive models. METHODS: This multicenter retrospective study included a training cohort (n = 92) and validation cohort (n = 111) with NSCLC patients received anti-PD-1 antibody monotherapy in eight Chinese hospitals, and a control cohort (n = 124) with NSCLC patients received chemotherapy. Logistic and Cox models were used to identify factors associated with response and survival respectively. Nomograms were developed based on significant factors, and evaluated by Concordance-index (C-index), area under the curve (AUC) and calibration curve. RESULT: In training cohort, smoking history (P = 0.027) and higher absolute lymphocyte count (P = 0.038) were associated with response. Female (P < 0.001), age ≥ 65 years (P = 0.004) and higher lactate dehydrogenase (LDH, P < 0.001) were associated with shorter progression-free survival (PFS). Higher LDH (P < 0.001) and derived neutrophil-to-lymphocyte ratio (P = 0.035) were associated with poorer overall survival (OS). While these factors were nonsignificant in chemotherapy cohort. Three nomograms to predict response at 6-week after treatment, PFS and OS at 6-, 12- and 18-months were developed, and validated in validation cohort. The C-indices of each nomogram in both cohorts were as follow (training vs validation): 0.706 vs 0.701; 0.728 vs 0.701; 0.741 vs 0.709; respectively. AUC showed a good discriminative ability. Calibration curves demonstrated a consistence between actual results and predictions. CONCLUSION: We developed predictive nomograms based on easily available factors to help clinicians early assess response and prognosis for NSCLC patients received anti-PD-1 antibody.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Anciano , Anticuerpos Monoclonales Humanizados/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Nomogramas , Pronóstico , Estudios Retrospectivos
15.
J Virol ; 94(15)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32461315

RESUMEN

Currently, an effective therapeutic treatment for porcine reproductive and respiratory syndrome virus (PRRSV) remains elusive. PRRSV helicase nsp10 is an important component of the replication transcription complex that plays a crucial role in viral replication, making nsp10 an important target for drug development. Here, we report the first crystal structure of full-length nsp10 from the arterivirus PRRSV, which has multiple domains: an N-terminal zinc-binding domain (ZBD), a 1B domain, and helicase core domains 1A and 2A. Importantly, our structural analyses indicate that the conformation of the 1B domain from arterivirus nsp10 undergoes a dynamic transition. The polynucleotide substrate channel formed by domains 1A and 1B adopts an open state, which may create enough space to accommodate and bind double-stranded RNA (dsRNA) during unwinding. Moreover, we report a unique C-terminal domain structure that participates in stabilizing the overall helicase structure. Our biochemical experiments also showed that deletion of the 1B domain and C-terminal domain significantly reduced the helicase activity of nsp10, indicating that the four domains must cooperate to contribute to helicase function. In addition, our results indicate that nidoviruses contain a conserved helicase core domain and key amino acid sites affecting helicase function, which share a common mechanism of helicase translocation and unwinding activity. These findings will help to further our understanding of the mechanism of helicase function and provide new targets for the development of antiviral drugs.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is a major respiratory disease agent in pigs that causes enormous economic losses to the global swine industry. PRRSV helicase nsp10 is a multifunctional protein with translocation and unwinding activities and plays a vital role in viral RNA synthesis. Here, we report the first structure of full-length nsp10 from the arterivirus PRRSV at 3.0-Å resolution. Our results show that the 1B domain of PRRSV nsp10 adopts a novel open state and has a unique C-terminal domain structure, which plays a crucial role in nsp10 helicase activity. Furthermore, mutagenesis and structural analysis revealed conservation of the helicase catalytic domain across the order Nidovirales (families Arteriviridae and Coronaviridae). Importantly, our results will provide a structural basis for further understanding the function of helicases in the order Nidovirales.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino/enzimología , ARN Helicasas/química , ARN Bicatenario/química , ARN Viral/química , Proteínas Virales/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Dominios Proteicos , ARN Helicasas/genética , ARN Bicatenario/genética , ARN Viral/genética , Proteínas Virales/genética
16.
Mol Cell Biochem ; 476(2): 1025-1036, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33165823

RESUMEN

Hypertrophic scar (HS) is a severe skin disorder characterized by excessive extracellular matrix production and abnormal function of fibroblasts. Recent studies have demonstrated that microRNAs (miRNAs) play critical roles in HS formation. This study aims to investigate the role of miR-3613-3p in the formation of HS. The mRNA and miRNA levels were measured by quantitative RT-PCR analysis. The protein levels were examined by Western blot assay. Cell proliferation was determined by Cell Counting Kit-8 assay. The Caspase-3 and Caspase-9 activities were measured using flow cytometry assay. Dual-luciferase activity reporter assay and mRNA-miRNA pulldown assay were conducted to validate the target of miR-3613-3p. miR-3613-3p was downregulated, while arginine and glutamate-rich 1 (ARGLU1) was upregulated in HS fibroblasts (HSFs) and tissues. Overexpression of miR-3613-3p or knockdown of ARGLU1 markedly inhibited the expression of extracellular matrix (ECM) production-associated proteins and promoted Caspase-3 and Caspase-9 activations in HSFs. ARGLU1 was further identified as a direct target of miR-3613-3p. Restoration of ARGLU1 abrogated the suppressive effect of miR-3613-3p on cell proliferation and ECM protein expression of HSFs. Our results demonstrated that miR-3613-3p inhibited HS formation via targeting ARGLU1, which may provide potential therapeutic targets for the management of HS.


Asunto(s)
Cicatriz Hipertrófica/prevención & control , Matriz Extracelular/metabolismo , Fibroblastos/patología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , MicroARNs/genética , Proliferación Celular , Células Cultivadas , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/patología , Regulación hacia Abajo , Fibroblastos/metabolismo , Humanos
17.
Anticancer Drugs ; 32(3): 314-322, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33394687

RESUMEN

Evodiamine (Evo), a quinazoline alkaloid and one of the most typical polycyclic heterocycles, is mainly isolated from Evodia rugulosa. Vasculogenic mimicry (VM) is a newly identified way of angiogenesis during tumor neovascularization, which is prevalent in a variety of highly invasive tumors. The purpose of this study was to investigate the effect and mechanism of Evo on VM in human colorectal cancer (CRC) cells. The number of VM structures was calculated by the three-dimensional culture of human CRC cells. Wound-healing was used to detect the migration of HCT116 cells. Gene expression was detected by reverse transcription-quantitative PCR assay. CD31/PAS staining was used to identify VM. Western blotting and immunofluorescence were used to detect protein levels. The results showed that Evo inhibited the migration of HCT116 cells, as well as the formation of VM. Furthermore, Evo reduced the expression of hypoxia-inducible factor 1-alpha (HIF-1α), VE-cadherin, VEGF, MMP2, and MMP9. In a model of subcutaneous xenotransplantation, Evo also inhibited tumor growth and VM formation. Our study demonstrates that Evo could inhibit VM in CRC cells HCT116 and reduce the expression of HIF-1α, VE-cadherin, VEGF, MMP2, and MMP9.


Asunto(s)
Neovascularización Patológica/tratamiento farmacológico , Quinazolinas/farmacología , Animales , Antígenos CD/efectos de los fármacos , Cadherinas/efectos de los fármacos , Movimiento Celular , Supervivencia Celular , Transición Epitelial-Mesenquimal , Femenino , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Ratones Endogámicos BALB C , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
J Clin Lab Anal ; 35(3): e23678, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33615571

RESUMEN

BACKGROUND: Objective measures used for the differential diagnosis and severity assessment of allergic rhinitis (AR) are still lacking. The involvement of hydrogen sulfide (H2 S) in the development of AR indicates that nasal exhaled H2 S (NeH2 S) has potential as a biomarker to be used in AR patients. This study aimed to evaluate the application value of NeH2 S measurement in the diagnosis and assessment of AR. METHODS: This study was a multi-center cross-sectional survey conducted in Northwestern China. Demographic information collection and rhinitis assessment were completed through questionnaires. The level of NeH2 S and serum immunoglobulin E were measured. RESULTS: The level of NeH2 S in general population ranged from 0 to 35 ppb, with a median value of 2 ppb. The NeH2 S levels in seasonal allergic rhinitis (SAR) patients were significantly lower than those in general population (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .023), and the NeH2 S value of the SAR group tended to be lower than that of the non-allergic rhinitis (NAR) group (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .094). The subgroup of AR patients with symptoms lasting longer than 2 weeks per month had a lower NeH2 S level compared with the subgroup of patients with symptoms lasting less than 2 weeks per month (2 [1, 2] vs. 2 [2, 3] ppb; p = .015). CONCLUSION: This study described the distribution range of NeH2 S levels in the general population. Further study with larger sample size was needed to clarify the relationship between NeH2 S level and AR.


Asunto(s)
Sulfuro de Hidrógeno/análisis , Rinitis Alérgica/diagnóstico , Adulto , Pruebas Respiratorias , China , Estudios Transversales , Espiración , Femenino , Humanos , Masculino , Persona de Mediana Edad , Rinitis Alérgica/etiología , Rinitis Alérgica Estacional/diagnóstico , Rinitis Alérgica Estacional/etiología , Índice de Severidad de la Enfermedad
19.
Exp Eye Res ; 199: 108141, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32721427

RESUMEN

Diabetic retinopathy (DR) is the most common complication of diabetes. Proliferative DR (PDR) is a more advanced stage of DR, which can cause severe impaired vision and even blindness. However, the precise pathological mechanisms of PDR remain unknown. DNA methylation serves an important role in the initiation and progression of numerous types of disease including PDR. The purpose of this study was to identify the aberrantly methylated differentially expressed genes (DEGs) as potential therapeutic targets of PDR. The gene expression microarray dataset GSE60436 and the methylation profiling microarray dataset GSE57362 were used to determine the aberrantly methylated DEGs in PDR, utilizing normal retinas as controls and fibrovascular membranes (FVMs) in patients with PDR as PDR samples. The functional term and signaling pathway enrichment analysis of the selected genes were subsequently performed. In addition, protein-protein interaction (PPI) networks were constructed to determine the hub genes, and the network of transcriptional factor (TF) and target hub genes was also analyzed. In total, 132 hypomethylated genes were found to be upregulated, whereas 172 hypermethylated genes were discovered to be downregulated in PDR. The hypomethylated upregulated genes were found to be enriched in the pathways, such as "cell-substrate adhesion", "adherens junction", "cell adhesion molecule binding" and "extracellular matrix receptor interactions". Meanwhile, the hypermethylated downregulated genes were enriched in the pathways, such as "visual perception", "presynapse" and the "synaptic vesicle cycle". Based on the PPI analysis, a total of eight hub genes were identified: CTGF, SERPINH1, LOX, RBP3, OTX2, RPE65, OPN1SW and NRL. It was hypothesized that the aberrant methylation of these genes might be related to the possible pathophysiology of PDR. An important transcriptional factor, TFDP1, was discovered to share the closest interactions with the hub genes from the gene-TF network. In conclusion, the present study identified an association among DNA methylation and gene expression in PDR using bioinformatics analysis, and identified the hub genes which might be potential methylation-based diagnosis and treatment targets for PDR in the near future.


Asunto(s)
Retinopatía Diabética/genética , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Metilación de ADN , Retinopatía Diabética/metabolismo , Proteínas del Ojo/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transducción de Señal/genética
20.
Exp Eye Res ; 200: 108207, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32866532

RESUMEN

Claudin-3, an integral component of tight junction, has recently been shown to be expressed in retinal ganglion cells, retinal pigment cells, and retinal vascular endothelial cells. However, the role of claudin-3 in the development of the neural retina and its vessels remains undefined. This study aimed to investigate the role of zebrafish claudin-h (cldnh), the closest ortholog of mouse and human claudin-3, in the development of the neural retina and its vessels. Cldnh levels in green fluorescent protein transgenic zebrafish were genetically manipulated by cldnh morpholino oligonucleotide (MO) and cldnh mRNA to investigate gene function. The expression of cldnh was analyzed using polymerase chain reaction and immunofluorescence staining. The altered morphological, cellular and molecular events in the cldnh MO-morphant eyes were detected using hematoxylin-eosin staining, fluorescent dye injection, confocal in vivo imaging, BrdU labeling, TUNEL assay, RNA sequencing, and Western blot. We demonstrated that the cldnh protein was expressed in the neural retina and the hyaloid vessel which is the predecessor of the retinal vessel in zebrafish. Cldnh knockdown delayed lamination of the neural retina and reduced its thickness, which might be associated with the downregulation of the retinal development-related genes of atoh7, pcdh17, crx, neurod1, insm1a, sox9b and cdh11, and the upregulation of the cell cycle and apoptosis-associated genes of tp53, cdkn1a and casp8. Cldnh knockdown also reduced the density and interrupted the lumenization of the hyaloid vessels, which might be owing to the downregulation of the vessel formation-related genes of hlx1 and myl7. In conclusion, cldnh was required for the normal development of the neural retina and its vessels in zebrafish, providing a basis for elucidating its role in the pathogenesis of retinal vascular or inflammatory diseases.


Asunto(s)
Barrera Hematorretinal/fisiología , Claudinas/genética , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Retina/metabolismo , Proteínas de Pez Cebra/genética , Animales , Western Blotting , Claudinas/biosíntesis , Modelos Animales , Retina/crecimiento & desarrollo , Pez Cebra , Proteínas de Pez Cebra/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA