Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30065069

RESUMEN

Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.


Asunto(s)
Genoma Fúngico , Inestabilidad Genómica , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/genética , Proteína de Replicación A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 116(35): 17213-17218, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405985

RESUMEN

Two-dimensional monolayer materials, with thicknesses of up to several atoms, can be obtained from almost every layer-structured material. It is believed that the catalogs of known 2D materials are almost complete, with fewer new graphene-like materials being discovered. Here, we report 2D graphene-like monolayers from monoxides such as BeO, MgO, CaO, SrO, BaO, and rock-salt structured monochlorides such as LiCl, and NaCl using first-principle calculations. Two-dimensional materials containing d-orbital atoms such as HfO, CdO, and AgCl are predicted. Adopting the same strategy, 2D graphene-like monolayers from mononitrides such as scandium nitride (ScN) and monoselenides such as cadmium selenide (CdSe) are discovered. Stress engineering is found to help stabilize 2D monolayers, through canceling the imaginary frequency of phonon dispersion relation. These 2D monolayers show high dynamic, thermal, kinetic, and mechanic stabilities due to atomic hybridization, and electronic delocalization.

3.
Angew Chem Int Ed Engl ; 61(30): e202205570, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35644909

RESUMEN

Structurally diverse acylations have been identified as post-translational modifications (PTMs) on histone lysine residues, but their functions and regulations remain largely unknown. Interestingly, in nature, a lysine acylation analog, pyrrolysine, is introduced as a co-translational modification (CTM) through genetic encoding. To explore this alternative life form, we created a model organism Saccharomyces cerevisiae containing site-specific lysine CTMs (acetyl-lysine, crotonyl-lysine, or another synthetic analog) at histone H3K56 using non-canonical amino acid mutagenesis to afford a chemically modified nucleosome in lieu of their own in vivo. We further demonstrated that acetylation of histone H3K56 partly tends to provide a more favorable chromatin environment for DNA repair in yeast compared to crotonylation and crosstalk with other PTMs differently. This study provides a potentially universal approach to decipher the consequences of different histone lysine PTMs in eukaryotes.


Asunto(s)
Histonas , Nucleosomas , Acetilación , Histonas/química , Lisina/química , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Phys Chem Chem Phys ; 21(29): 16207-16212, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31298237

RESUMEN

The study of domain switching and dielectric breakdown behavior of ferroelectrics together with their relations is crucial for understanding the essence of ferroelectric physics and exploring their applications. In this work, a phase-field method is developed to reveal the coupled domain structure and dielectric breakdown evolution in a ferroelectric single crystal (FSC) by employing the Ginzburg-Landau kinetic equation and Griffith type energy criterion. Results show that the domain switching mobility, symbolizing the speed of polarization evolution, has a significant influence on ferroelectric properties, namely coercive field, dielectric breakdown strength (DBS), discharge energy density (DED), and energy storage efficiency (ESE). It is found that FSC with the higher domain switching mobility always displays a lower coercive field and smaller remanent electric displacement (or polarization) together with a higher DBS, accounting for a higher DED and ESE. Such findings can provide effective guidance in understanding and designing high-DBS and high-energy-density ferroelectrics. In addition, the defect concentration has a significant influence on the DBS and the pattern of breakdown paths.

5.
Phys Chem Chem Phys ; 19(19): 11778-11785, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28435967

RESUMEN

Fully dense Y2Mo3O12/Al composites were prepared by squeeze-casting. Relatively mild conditions of 750 °C/20 min/50 MPa were used in order to avoid reaction of the components. SEM, Raman spectroscopy, XRD and dilatometry were used to characterize the microstructures and morphologies of the composites. Zero thermal expansion was achieved in the temperature range where the thermal mismatch strain was zero. We show that the CTE mismatch of Al and Y2Mo3O12 results in compressive and tensile strains that distort the Y2Mo3O12 lattice. We establish a novel method to measure the negative thermal expansion (NTE) materials' CTE under strain by measuring the composites' CTE and calculating the thermal mismatch strain between the NTE ceramic and the metal matrix. The relationship between thermal strain and Raman shift is established and measured and the simulated results are in good agreement. We also find Y2Mo3O12 to have a positive CTE when the surface strain is ≥0.80 × 10-2%.

6.
Blood Rev ; 64: 101155, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38008700

RESUMEN

Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.


Asunto(s)
Factor Plaquetario 4 , Trombocitopenia , Humanos , Factor Plaquetario 4/metabolismo , Vacunas contra la COVID-19/efectos adversos , Heparina , Trombocitopenia/etiología , Inmunoglobulina G , Factores Inmunológicos/efectos adversos
7.
Nanoscale ; 14(39): 14661-14669, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36165083

RESUMEN

Low energy conversion efficiency from the absorbed photon to the catalytic species remains a major obstacle for the real application of photocatalysis. In recent years, the introduction of a built-in electric field has proved to be impactful in facilitating the photoinduced charge separation, among which, ferroelectric polarization is highly recommended by getting rid of mechanical stresses. Developing ferroelectrics directly as photoactive semiconductors is promising in view of the synergistic catalytic enhancement. Therefore, Bi2MoO6 nanosheets with ultrathin layered structure (<10 nm) and abundant oxygen vacancies were synthesized through the hydrothermal method. The two-dimensional nanostructure created more active sites and a convenient polarization condition. Subsequently, corona poling was applied on the Bi2MoO6 nanosheets, which can significantly accelerate the 100% degradation rate of RhB from 50 to 20 min, surpassing that of metal-free photocatalysts. The combined effect of semiconductor, ferroelectric polarization, oxygen vacancies, and nano-layered structure offers new strategies for designing multifield coupling catalysts, providing insights into the regulation of charge carrier dynamics.

8.
Nat Commun ; 13(1): 5086, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038595

RESUMEN

Piezoelectric materials provide high strain and large driving forces in actuators and can transform electrical energy into mechanical energy. Although they were discovered over 100 years ago, scientists are still searching for alternative lead-free piezoelectrics to reduce their environmental impact. Developing high-strain piezoelectric materials has been a long-term challenge, particularly challenging for the design of high-strain polycrystalline piezoelectrics containing no toxic lead element. In this work, we report one strategy to enhance the electrostrain via designing "heterostrain" through atomic-scale defect engineering and mesoscale domain engineering. We achieve an ultrahigh electrostrain of 2.3% at high temperature (220 °C) in lead-free polycrystalline ceramics, higher than all state-of-the-art piezoelectric materials, including lead-free and lead-based ceramics and single crystals. We demonstrate practical solutions for achieving high electrostrain in low-cost environmentally piezoelectric for various applications.

9.
Dalton Trans ; 50(25): 8851-8862, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34100054

RESUMEN

Lead-free 0.945K0.48Na0.52Nb0.96Ta0.04O3-0.055BaZrO3 + 6%MnO + xZrO2 piezoelectric ceramics sintered in a reducing atmosphere were prepared by conventional solid-state reaction methods. The use of the ZrO2 dopant resulted in an increase in the rhombohedral (R) phase in orthorhombic (O)/R coexisting phases. Nonstoichiometric ZrO2 dopant addition could effectively improve the anti-reduction properties of KNN-based ceramics via controlling the oxygen vacancy concentration. In particular, 2% mol nonstoichometric ZrO2 dopant addition could improve the activation energy of the grain boundary (Egb) via increasing the grain boundary thickness. The addition of the ZrO2 dopant could improve the fatigue resistance of the unipolar piezoelectric strain of 0.945K0.48Na0.52Nb0.96Ta0.04O3-0.055BaZrO3 + 6%MnO ceramics. The optimum inverse piezoelectric coefficient of ceramics at x = 0.01 reached up to ∼465 pm V-1 at a low driving electric field E of 20 kV cm-1 at room temperature, and the temperature stability of reached 155 °C. After 106 unipolar fatigue cycles, the ß value of 0.945KNNT-0.055BZ + 6Mn + xZr ceramics could be preserved to more than 86%. The 0.945K0.48Na0.52Nb0.96Ta0.04O3-0.055BaZrO3 + 6%MnO + xZrO2 ceramic is a lead-free material with great potential to be applied in the fabrication of multilayer ceramic actuators with Ni inner electrodes in the future.

10.
Dalton Trans ; 50(47): 17800, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34816845

RESUMEN

Correction for 'Improving the piezoelectric strain and anti-reduction properties of K0.5Na0.5NbO3-based ceramics sintered in a reducing atmosphere' by Zhenyong Cen et al., Dalton Trans., 2021, 50, 8851-8862, DOI: 10.1039/D1DT01059J.

11.
ACS Appl Mater Interfaces ; 13(24): 28484-28492, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34110769

RESUMEN

Dielectric ceramics are crucial for high-temperature, pulse-power energy storage applications. However, the mutual restriction between the polarization and breakdown strength has been a significant challenge. Here, multiphase engineering controlled by the two-step sintering heating rate is adopted to simultaneously obtain a high polarization and breakdown strength in 0.8(0.95Bi0.5Na0.5TiO3-0.05SrZrO3)-0.2NaNbO3 (BNTSZNN) ceramic systems. The coexistence of tetragonal (T) and rhombohedral (R) phases benefits the temperature stability of BNTSZNN ceramics. Increasing the heating rate during sintering reduces the diffusion of SrZrO3 and NaNbO3 into Bi0.5Na0.5TiO3, which results in a high proportion of the R phase and a finer grain size. The overall polarization is enhanced by increasing the proportion of the high-polarization R phase, which is demonstrated using a first-principles method. Meanwhile, the finer grain size enhances the breakdown strength. Following this design philosophy, an ultrahigh Wdis of 5.55 J/cm3 and η above 85% is achieved in BNTSZNN ceramics as prepared with a fast heating rate of 60 °C/min given a simultaneously high polarization of 43 µC/cm2 and high breakdown strength of 350 kV/cm. Variations in the discharge energy density from room temperature to 160 °C are less than 10%. Additionally, such BNTSZNN ceramics exhibit an ultrafast discharge speed with τ0.9 at approximately 60 ns, which shows great potential in pulse-power system applications.

12.
Natl Sci Rev ; 7(2): 355-365, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34692051

RESUMEN

Due to growing concern for the environment and human health, searching for high-performance lead-free piezoceramics has been a hot topic of scientific and industrial research. Despite the significant progress achieved toward enhancing piezoelectricity, further efforts should be devoted to the synergistic improvement of piezoelectricity and its thermal stability. This study provides new insight into these topics. A new KNN-based lead-free ceramic material is presented, which features a large piezoelectric coefficient (d 33) exceeding 500 pC/N and a high Curie temperature (T c) of ∼200°C. The superior piezoelectric response strongly relies on the increased composition-induced structural flexibility due to lattice softening and decreased unit cell distortion. In contrast to piezoelectricity anomalies induced via polymorphic transition, this piezoelectricity enhancement is effective within a broad temperature range rather than a specific small range. In particular, a hierarchical domain architecture composed of nano-sized domains along the submicron domains was detected in this material system, which further contributes to the high piezoelectricity.

13.
Nanotechnology ; 20(5): 055709, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19417368

RESUMEN

High aspect ratio BaTiO(3) nanotube arrays with single crystal structure were fabricated by the hydrothermal method at low temperature (150 degrees C). Numerous structure study methods, including x-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and x-ray photoelectron spectroscopy (XPS), were used to investigate the structure of single crystal BaTiO(3) nanotube arrays. TEM observation shows that BaTiO(3) nanotubes have identical crystallographic orientation through their growth directions. EPR and XPS studies show that the obtained BaTiO(3) nanotubes contain perceptible oxygen vacancies. Those oxygen vacancies are responsible for the observed green emission band at 545 nm (2.27 eV) detected by photoluminescence study.


Asunto(s)
Compuestos de Bario/química , Cristalización/métodos , Nanotecnología/métodos , Nanotubos/química , Nanotubos/ultraestructura , Titanio/química , Calor , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
14.
Artículo en Inglés | MEDLINE | ID: mdl-17571822

RESUMEN

This paper presents analytical solutions to the transverse deformation shape of a circular axisymmetric piezoelectric-metal composite unimorph actuator. The solutions account for both the influence of an applied electric field and a concentrated or uniformly distributed mechanical load. Using piezoelectric constitutive equations, combined with thin plate and small bending elastic theory, the generalized equation of motion for bending of thin piezoelectric-metal composite plates has been derived. Our approach predicts that there is an optimum thickness ratio between the piezoelectric and metal plates, which leads to a maximum combination of deflection and load carrying capabilities. Derived formulas are very simple that offer a quick method for engineering design and optimization of a circular unimorph piezoelectric actuator.


Asunto(s)
Acústica/instrumentación , Transferencia de Energía , Modelos Teóricos , Transductores , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Movimiento (Física)
15.
ACS Appl Mater Interfaces ; 9(23): 19963-19972, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28537373

RESUMEN

A novel lead-free (1 - x)CaTiO3-xBiScO3 linear dielectric ceramic with enhanced energy-storage density was fabricated. With the composition of BiScO3 increasing, the dielectric constant of (1 - x)CaTiO3-xBiScO3 ceramics first increased and then decreased after the composition x > 0.1, while the dielectric loss decreased first and increased. For the composition x = 0.1, the polarization was increased into 12.36 µC/cm2, 4.6 times higher than that of the pure CaTiO3. The energy density of 0.9CaTiO3-0.1BiScO3 ceramic was 1.55 J/cm3 with the energy-storage efficiency of 90.4% at the breakdown strength of 270 kV/cm, and the power density was 1.79 MW/cm3. Comparison with other lead-free dielectric ceramics confirmed the superior potential of CaTiO3-BiScO3 ceramics for the design of ceramics capacitors for energy-storage applications. First-principles calculations revealed that Sc subsitution of Ti-site induced the atomic displacement of Ti ions in the whole crystal lattice, and lattice expansion was caused by variation of the bond angles and lenghths. Strong hybridization between O 2p and Ti 3d was observed in both valence band and conduction band; the hybridization between O 2p and Sc 3d at high conduction band was found to enlarge the band gap, and the static dielectric tensors were increased, which was the essential for the enhancement of polarization and dielectric properties.

16.
Mol Med Rep ; 16(4): 5675-5682, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28849191

RESUMEN

Paecilomyces hepiali contains identical chemical constituents to Cordyceps sinensis, and it presents antidepressant­like activity via regulating noradrenergic and dopaminergic systems. Behavioral despair depression models serve important roles in scientific screening and evaluation of antidepressants. The present study aims to investigate the antidepressant­like activity of P. hepiali extract (PHC) in chronic unpredictable mild stress (CUMS)­induced rat model of depression. Following four weeks of treatment, similar to fluoxetine at 3 mg/kg (positive drug), PHC at doses from 0.08 to 2.0 g/kg strongly increased sucrose preference and reduced the immobility time of depression­like rats in forced swimming test. The hypo­level of adrenocorticotropic hormone, noradrenaline and glucocorticoid receptor in serum and hypothalamus of depression­like rats was enhanced by PHC. PHC normalized CUMS­induced disorders of dihydroxyphenylacetic acid, dopamine, 5­hydroxytryptamine (5­HT) and 5­hydroxyindoleacetic acid in serum and/or hypothalamus of depression­like rats. Moreover, PHC enhanced the expression of tyrosine hydroxylase and reduced the levels of dopamine D2 receptor and 5­HT2A receptor in hypothalamus. These results suggested that the antidepressant­like effects of PHC in CUMS­induced depression are associated with not only the modulation of dopamine, but also the regulation of 5-HT.


Asunto(s)
Trastorno Depresivo/etiología , Trastorno Depresivo/metabolismo , Dopamina/metabolismo , Micosis/complicaciones , Paecilomyces/fisiología , Serotonina/metabolismo , Estrés Psicológico , Animales , Conducta Animal , Enfermedad Crónica , Modelos Animales de Enfermedad , Hormonas/sangre , Hormonas/metabolismo , Masculino , Micosis/microbiología , Neurotransmisores/sangre , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
17.
J Phys Condens Matter ; 18(17): 4371-9, 2006 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-21690788

RESUMEN

Single-phased polycrystalline BiMnO(3) (hereinafter abbreviated as BMO) ceramic was fabricated via high-pressure solid-state reaction. Microstructure modification of selective grains, signalled by emergence of superlattice diffraction, was scrutinized by means of electron diffraction (ED) combined with high-resolution transmission electron microscopy (HRTEM). It was clearly evidenced that the well established C 2 monoclinic substructure (a = 9.53 Å, b = 5.61 Å, c = 9.85 Å and ß = 110.67°) of BMO (Atou et al 1999 J. Solid State Chem. 145 639) is metastable and prone to be transformed to a new pseudocubic superstructure (a≈b≈c≈15.8 Å and α≈ß≈γ≈90°) (Yang et al 2006 Phys. Rev. B 73 024114) when irradiated continuously by an electron beam. Magnetization measurement unveiled a unique ferromagnetic phase transition at 103 K, which corroborated our speculation that as-prepared BMO ceramic is free of polymorphism at ambient conditions.

18.
Sci Rep ; 6: 22053, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26915972

RESUMEN

Miniaturization of domains to the nanometer scale has been previously reported in many piezoelectrics with two-phase coexistence. Despite the observation of nanoscale domain configuration near the polymorphic phase transition (PPT) regionin virgin (K0.5Na0.5)NbO3 (KNN) based ceramics, it remains unclear how this domain state responds to external loads and influences the macroscopic electro-mechanical properties. To this end, the electric-field-induced and stress-induced strain curves of KNN-based ceramics over a wide compositional range across PPT were characterized. It was found that the coercive field of the virgin samples was highest in PPT region, which was related to the inhibited domain wall motion due to the presence of nanodomains. However, the coercive field was found to be the lowest in the PPT region after electrical poling. This was related to the irreversible transformation of the nanodomains into micron-sized domains during the poling process. With the similar micron-sized domain configuration for all poled ceramics, the domains in the PPT region move more easily due to the additional polarization vectors. The results demonstrate that the poling process can give rise to the irreversible domain configuration transformation and then account for the inverted macroscopic piezoelectricity in the PPT region of KNN-based ceramics.

19.
ACS Appl Mater Interfaces ; 8(5): 3340-8, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26775652

RESUMEN

GN/BT nanocomposites were fabricated via colloidal processing methods, and ceramics were sintered through two-step sintering methods. The microstructure and morphology were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and field emission scanning electron microscopy. XRD analysis shows that all samples are perovskite phases, and the lattice parameters a and c almost decrease linearly with the increase of graphene nanosheets. The dielectric properties were tested by using precision impedance. The maximum dielectric constant at the Curie temperature for the nanocomposites with graphene addition of 3 wt % is about 16,000, almost 2 times more than that of pure BaTiO3 ceramics. The relaxation, band structure, density of states, and charge density distribution of GN/BT superlattices were calculated using first-principles calculations for the first time, and results showed the strong hybrid interactions between C 2p states and O 2p and Ti 3d orbitals.

20.
Materials (Basel) ; 8(4): 1729-1737, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-28788028

RESUMEN

A kind of piezoelectric ink was prepared with Li, Ta, Sb co-doped (K, Na)NbO3 (KNN) powders. Piezoelectric scaffolds with diameters at micrometer scale were constructed from this ink by using direct ink writing method. According to the micro-morphology and density test, the samples sintered at 1100 °C for 2 h have formed ceramics completely with a high relative density of 98%. X-ray diffraction (XRD) test shows that the main phase of sintered samples is orthogonal (Na0.52K0.4425Li0.0375)(Nb0.87Sb0.07Ta0.06)O3. The piezoelectric constant d33 of 280 pC/N, dielectric constant ε of 1775, remanent polarization Pr of 18.8 µC/cm² and coercive field Ec of 8.5 kV/cm prove that the sintered samples exhibit good electrical properties. The direct ink writing method allows one to design and rapidly fabricate piezoelectric structures in complex three-dimensional (3D) shapes without the need for any dies or lithographic masks, which will simplify the process of material preparation and offer new ideas for the design and application of piezoelectric devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA