RESUMEN
Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.
Asunto(s)
Microscopía por Crioelectrón , Transporte de Proteínas , Pez Cebra , Humanos , Animales , Endosomas/metabolismo , Células HEK293 , Células HeLa , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Unión ProteicaRESUMEN
Lysosomes require an acidic lumen between pH 4.5 and 5.0 for effective digestion of macromolecules. This pH optimum is maintained by proton influx produced by the V-ATPase and efflux through an unidentified "H+ leak" pathway. Here we show that TMEM175, a genetic risk factor for Parkinson's disease (PD), mediates the lysosomal H+ leak by acting as a proton-activated, proton-selective channel on the lysosomal membrane (LyPAP). Acidification beyond the normal range potently activated LyPAP to terminate further acidification of lysosomes. An endogenous polyunsaturated fatty acid and synthetic agonists also activated TMEM175 to trigger lysosomal proton release. TMEM175 deficiency caused lysosomal over-acidification, impaired proteolytic activity, and facilitated α-synuclein aggregation in vivo. Mutational and pH normalization analyses indicated that the channel's H+ conductance is essential for normal lysosome function. Thus, modulation of LyPAP by cellular cues may dynamically tune the pH optima of endosomes and lysosomes to regulate lysosomal degradation and PD pathology.
Asunto(s)
Enfermedad de Parkinson , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismo , ProtonesRESUMEN
Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.
Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Bases , Cruzamiento , Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Regiones Promotoras GenéticasRESUMEN
Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.
Asunto(s)
Activinas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Inflamación Neurogénica/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Activinas/genética , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Transducción de SeñalRESUMEN
Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.
Asunto(s)
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores del Factor Autocrino de Motilidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Diferenciación Celular/fisiología , Fibroblastos/patología , Humanos , Ratones , Miofibroblastos/patología , Fibrosis Pulmonar/patología , Transducción de Señal/fisiologíaRESUMEN
Two-terminal monolithic perovskite/silicon tandem solar cells demonstrate huge advantages in power conversion efficiency compared with their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a substantial challenge for perovskite/silicon tandem cells3,4. By exploiting the nanoscale discretely distributed lithium fluoride ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer-intertwined passivation strategy that combines efficient electron extraction with further suppression of non-radiative recombination. We constructed perovskite/silicon tandem devices on a double-textured Czochralski-based silicon heterojunction cell, which featured a mildly textured front surface and a heavily textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite/silicon tandem achieved an independently certified stabilized power conversion efficiency of 33.89%, accompanied by an impressive fill factor of 83.0% and an open-circuit voltage of nearly 1.97 V. To the best of our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley-Queisser limit of 33.7%.
RESUMEN
Back contact silicon solar cells, valued for their aesthetic appeal by removing grid lines on the sunny side, find applications in buildings, vehicles and aircrafts, enabling self-power generation without compromising appearance1-3. Patterning techniques arrange contacts on the shaded side of the silicon wafer, offering benefits for light incidence as well. However, the patterning process complicates production and causes power loss. Here we employ lasers to streamline back contact solar cell fabrication and enhance power conversion efficiency. Our approach produces the first silicon solar cell to exceed 27% efficiency. Hydrogenated amorphous silicon layers are deposited on the wafer for surface passivation and collection of light-generated carriers. A dense passivating contact, diverging from conventional technology practice, is developed. Pulsed picosecond lasers at different wavelengths are used to create back contact patterns. The developed approach is a streamlined process for producing high-performance back contact silicon solar cells, with a total effective processing time of about one-third that of emerging mainstream technology. To meet terawatt demand, we develop rare indium-less cells at 26.5% efficiency and precious silver-free cells at 26.2% efficiency. The integration of solar solutions in buildings and transportation is poised to expand with these technological advancements.
RESUMEN
Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.
Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrosis Pulmonar/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosforilación/fisiología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Regulación hacia Arriba/fisiologíaRESUMEN
The methanogenic degradation of oil hydrocarbons can proceed through syntrophic partnerships of hydrocarbon-degrading bacteria and methanogenic archaea1-3. However, recent culture-independent studies have suggested that the archaeon 'Candidatus Methanoliparum' alone can combine the degradation of long-chain alkanes with methanogenesis4,5. Here we cultured Ca. Methanoliparum from a subsurface oil reservoir. Molecular analyses revealed that Ca. Methanoliparum contains and overexpresses genes encoding alkyl-coenzyme M reductases and methyl-coenzyme M reductases, the marker genes for archaeal multicarbon alkane and methane metabolism. Incubation experiments with different substrates and mass spectrometric detection of coenzyme-M-bound intermediates confirm that Ca. Methanoliparum thrives not only on a variety of long-chain alkanes, but also on n-alkylcyclohexanes and n-alkylbenzenes with long n-alkyl (C≥13) moieties. By contrast, short-chain alkanes (such as ethane to octane) or aromatics with short alkyl chains (C≤12) were not consumed. The wide distribution of Ca. Methanoliparum4-6 in oil-rich environments indicates that this alkylotrophic methanogen may have a crucial role in the transformation of hydrocarbons into methane.
Asunto(s)
Euryarchaeota , Hidrocarburos , Metano , Alcanos/metabolismo , Biodegradación Ambiental , Euryarchaeota/enzimología , Euryarchaeota/genética , Hidrocarburos/metabolismo , Metano/metabolismo , Oxidorreductasas/metabolismo , FilogeniaRESUMEN
As an essential intrinsic component of photosystem II (PSII) in all oxygenic photosynthetic organisms, heme-bridged heterodimer cytochrome b559 (Cyt b559) plays critical roles in the protection and assembly of PSII. However, the underlying mechanisms of Cyt b559 assembly are largely unclear. Here, we characterized the Arabidopsis (Arabidopsis thaliana) rph1 (resistance to Phytophthora1) mutant, which was previously shown to be susceptible to the oomycete pathogen Phytophthora brassicae. Loss of RPH1 leads to a drastic reduction in PSII accumulation, which can be primarily attributed to the defective formation of Cyt b559. Spectroscopic analyses showed that the heme level in PSII supercomplexes isolated from rph1 is significantly reduced, suggesting that RPH1 facilitates proper heme assembly in Cyt b559. Due to the loss of RPH1-mediated processes, a covalently bound PsbE-PsbF heterodimer is formed during the biogenesis of PSII. In addition, rph1 is highly photosensitive and accumulates elevated levels of reactive oxygen species under photoinhibitory-light conditions. RPH1 is a conserved intrinsic thylakoid protein present in green algae and terrestrial plants, but absent in Synechocystis, and it directly interacts with the subunits of Cyt b559. Thus, our data demonstrate that RPH1 represents a chloroplast acquisition specifically promoting the efficient assembly of Cyt b559, probably by mediating proper heme insertion into the apo-Cyt b559 during the initial phase of PSII biogenesis.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Grupo Citocromo b , Complejo de Proteína del Fotosistema II , Phytophthora , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Grupo Citocromo b/metabolismo , Grupo Citocromo b/genética , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Hemo/metabolismo , Mutación/genética , Tilacoides/metabolismoRESUMEN
COVID-19 forced students to rely on online learning using multimedia tools, and multimedia learning continues to impact education beyond the pandemic. In this study, we combined behavioral, eye-tracking, and neuroimaging paradigms to identify multimedia learning processes and outcomes. College students viewed four video lectures including slides with either an onscreen human instructor, an animated instructor, or no onscreen instructor. Brain activity was recorded via fMRI, visual attention was recorded via eye-tracking, and learning outcome was assessed via post-tests. Onscreen presence of instructor, compared with no instructor presence, resulted in superior post-test performance, less visual attention on the slide, more synchronized eye movements during learning, and higher neural synchronization in cortical networks associated with socio-emotional processing and working memory. Individual variation in cognitive and socio-emotional abilities and intersubject neural synchronization revealed different levels of cognitive and socio-emotional processing in different learning conditions. The instructor-present condition evoked increased synchronization, likely reflecting extra processing demands in attentional control, working memory engagement, and socio-emotional processing. Although human instructors and animated instructors led to comparable learning outcomes, the effects were due to the dynamic interplay of information processing vs. attentional distraction. These findings reflect a benefit-cost trade-off where multimedia learning outcome is enhanced only when the cognitive benefits motivated by the social presence of onscreen instructor outweigh the cognitive costs brought about by concurrent attentional distraction unrelated to learning.
Asunto(s)
Aprendizaje , Multimedia , Humanos , Cognición/fisiología , Memoria a Corto Plazo/fisiología , EstudiantesRESUMEN
The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
RESUMEN
Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that CâC bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.
RESUMEN
The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.
Asunto(s)
Metagenoma , Microbiota , Ovinos/genética , Animales , Transcriptoma , Rumen , Rumiantes/genéticaRESUMEN
ABSTRACT: Patients with multiple myeloma (MM) treated with B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T cells usually relapse with BCMA+ disease, indicative of CAR T-cell suppression. CD200 is an immune checkpoint that is overexpressed on aberrant plasma cells (aPCs) in MM and is an independent negative prognostic factor for survival. However, CD200 is not present on MM cell lines, a potential limitation of current preclinical models. We engineered MM cell lines to express CD200 at levels equivalent to those found on aPCs in MM and show that these are sufficient to suppress clinical-stage CAR T-cells targeting BCMA or the Tn glycoform of mucin 1 (TnMUC1), costimulated by 4-1BB and CD2, respectively. To prevent CD200-mediated suppression of CAR T cells, we compared CRISPR-Cas9-mediated knockout of the CD200 receptor (CD200RKO), to coexpression of versions of the CD200 receptor that were nonsignaling, that is, dominant negative (CD200RDN), or that leveraged the CD200 signal to provide CD28 costimulation (CD200R-CD28 switch). We found that the CD200R-CD28 switch potently enhanced the polyfunctionality of CAR T cells, and improved cytotoxicity, proliferative capacity, CAR T-cell metabolism, and performance in a chronic antigen exposure assay. CD200RDN provided modest benefits, but surprisingly, the CD200RKO was detrimental to CAR T-cell activity, adversely affecting CAR T-cell metabolism. These patterns held up in murine xenograft models of plasmacytoma, and disseminated bone marrow predominant disease. Our findings underscore the importance of CD200-mediated immune suppression in CAR T-cell therapy of MM, and highlight a promising approach to enhance such therapies by leveraging CD200 expression on aPCs to provide costimulation via a CD200R-CD28 switch.
Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/metabolismo , Antígenos CD28/metabolismo , Linfocitos T , Antígeno de Maduración de Linfocitos B/metabolismo , Recurrencia Local de Neoplasia/metabolismoRESUMEN
The identification and detection of disease-related biomarkers is essential for early clinical diagnosis, evaluating disease progression, and for the development of therapeutics. Possessing the advantages of high sensitivity and selectivity, fluorescent probes have become effective tools for monitoring disease-related active molecules at the cellular level and in vivo. In this review, we describe current fluorescent probes designed for the detection and quantification of key bioactive molecules associated with common diseases, such as organ damage, inflammation, cancers, cardiovascular diseases, and brain disorders. We emphasize the strategies behind the design of fluorescent probes capable of disease biomarker detection and diagnosis and cover some aspects of combined diagnostic/therapeutic strategies based on regulating disease-related molecules. This review concludes with a discussion of the challenges and outlook for fluorescent probes, highlighting future avenues of research that should enable these probes to achieve accurate detection and identification of disease-related biomarkers for biomedical research and clinical applications.
Asunto(s)
Biomarcadores , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Animales , Neoplasias/diagnóstico , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Inflamación/diagnóstico , Encefalopatías/diagnóstico , Encefalopatías/diagnóstico por imagenRESUMEN
The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of â¼9.8 µM and competitively inhibits its activity with an inhibition constant (Ki) of â¼5.8 µM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure-activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.
Asunto(s)
Complemento C1s , Vía Clásica del Complemento , Animales , Ovinos , Péptido Hidrolasas , Complemento C1/metabolismo , Endopeptidasas , Piridinas/farmacologíaRESUMEN
In March 2020, the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1, a pandemic. With rapidly accumulating numbers of cases and deaths reported globally2, a vaccine is urgently needed. Here we report the available safety, tolerability and immunogenicity data from an ongoing placebo-controlled, observer-blinded dose-escalation study (ClinicalTrials.gov identifier NCT04368728) among 45 healthy adults (18-55 years of age), who were randomized to receive 2 doses-separated by 21 days-of 10 µg, 30 µg or 100 µg of BNT162b1. BNT162b1 is a lipid-nanoparticle-formulated, nucleoside-modified mRNA vaccine that encodes the trimerized receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2. Local reactions and systemic events were dose-dependent, generally mild to moderate, and transient. A second vaccination with 100 µg was not administered because of the increased reactogenicity and a lack of meaningfully increased immunogenicity after a single dose compared with the 30-µg dose. RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titres in sera increased with dose level and after a second dose. Geometric mean neutralizing titres reached 1.9-4.6-fold that of a panel of COVID-19 convalescent human sera, which were obtained at least 14 days after a positive SARS-CoV-2 PCR. These results support further evaluation of this mRNA vaccine candidate.
Asunto(s)
Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Vacunas Virales/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Vacunas Virales/genética , Adulto Joven , Sueroterapia para COVID-19RESUMEN
Soft-tissue sarcomas represent a heterogeneous group of cancer, with more than 50 histological subtypes1,2. The clinical presentation of patients with different subtypes is often atypical, and responses to therapies such as immune checkpoint blockade vary widely3,4. To explain this clinical variability, here we study gene expression profiles in 608 tumours across subtypes of soft-tissue sarcoma. We establish an immune-based classification on the basis of the composition of the tumour microenvironment and identify five distinct phenotypes: immune-low (A and B), immune-high (D and E), and highly vascularized (C) groups. In situ analysis of an independent validation cohort shows that class E was characterized by the presence of tertiary lymphoid structures that contain T cells and follicular dendritic cells and are particularly rich in B cells. B cells are the strongest prognostic factor even in the context of high or low CD8+ T cells and cytotoxic contents. The class-E group demonstrated improved survival and a high response rate to PD1 blockade with pembrolizumab in a phase 2 clinical trial. Together, this work confirms the immune subtypes in patients with soft-tissue sarcoma, and unravels the potential of B-cell-rich tertiary lymphoid structures to guide clinical decision-making and treatments, which could have broader applications in other diseases.
Asunto(s)
Linfocitos B/inmunología , Inmunoterapia , Sarcoma/tratamiento farmacológico , Sarcoma/inmunología , Estructuras Linfoides Terciarias/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Estudios de Cohortes , Células Dendríticas Foliculares/inmunología , Humanos , Mutación , Fenotipo , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Reproducibilidad de los Resultados , Sarcoma/clasificación , Sarcoma/patología , Tasa de Supervivencia , Microambiente TumoralRESUMEN
Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.