Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Genomics ; 25(1): 414, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671371

RESUMEN

BACKGROUND: Growth rate is a crucial economic trait for farmed animals, but the genetic regulation of this trait is largely unknown in non-model organisms such as shrimp. RESULTS: In this study, we performed genome-wide phenotypic quantitative trait loci (QTL) and expression quantitative trait loci (eQTL) mapping analyses to identify genes affecting the growth rate of Pacific white shrimp (Litopenaeus vannamei), which is the most commercially-farmed crustacean worldwide. We used RNA-sequencing of 268 individuals in a mapping population, and subsequently validated our findings through gene silencing and shrimp growth experiments. We constructed a high-density genetic linkage map comprising 5533 markers spanning 44 linkage groups, with a total distance of 6205.75 cM and an average marker interval of 1.12 cM. Our analyses identified 11 QTLs significantly correlated with growth rate, and 117,525 eQTLs. By integrating QTL and eQTL data, we identified a gene (metalloreductase STEAP4) highly associated with shrimp growth rate. RNA interference (RNAi) analysis and growth experiments confirmed that STEAP4 was significantly correlated with growth rate in L. vannamei. CONCLUSIONS: Our results indicate that the comprehensive analysis of QTL and eQTL can effectively identify genes involved in complex animal traits. This is important for marker-assisted selection (MAS) of animals. Our work contributes to the development of shrimp breeding and available genetic resources.


Asunto(s)
Mapeo Cromosómico , Penaeidae , Sitios de Carácter Cuantitativo , Animales , Penaeidae/genética , Penaeidae/crecimiento & desarrollo , Fenotipo , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Interferencia de ARN
2.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511332

RESUMEN

DNA methylation is an important epigenetic modification that has been shown to be associated with responses to non-biological stressors. However, there is currently no research on DNA methylation in response to environmental signals in shrimp. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles and differentially expressed genes between two strains of Litopenaeus vannamei with significantly different cold tolerance through whole genome bisulfite sequencing (WGBS) and transcriptome sequencing. Between Lv-C and Lv-T (constant temperature of 28 °C and low temperatures of 18 °C and 10 °C) under cytosine-guanine (CG) environments, 39,100 differentially methylated regions (DMRs) were identified, corresponding to 9302 DMR-related genes (DMRGs). The DMRs were mainly located in the gene body (exons and introns). Gene Ontology (GO) analysis showed that these DMRGs were significantly enriched in cell parts, catalytic activity, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed significant enrichment of these DMRGs in pathways such as proteasome (ko03050), oxidative phosphorylation (ko00190), mTOR signaling pathway (ko04150), fatty acid metabolism (ko01212), and fatty acid degradation (ko00071). The comprehensive results suggested that L. vannamei mainly regulates gene expression in response to low temperatures through hypermethylation or demethylation of some genes involved in thermogenesis, glycolysis, the autophagy pathway, the peroxisome, and drug metabolism pathways. These results provide important clues for studying DNA methylation patterns and identifying cold tolerance genes in shrimp.


Asunto(s)
Epigénesis Genética , Transcriptoma , Animales , Epigenoma , Genoma , Metilación de ADN , Crustáceos , Ácidos Grasos
3.
BMC Genomics ; 21(1): 857, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267780

RESUMEN

BACKGROUND: Ammonia is one of the most common toxicological environment factors affecting shrimp health. Although ammonia tolerance in shrimp is closely related to successful industrial production, few genetic studies of this trait are available. RESULTS: In this study, we constructed a high-density genetic map of the Pacific white shrimp (Litopenaeus vannamei) using specific length amplified fragment sequencing (SLAF-seq). The constructed genetic map contained 17,338 polymorphic markers spanning 44 linkage groups, with a total distance of 6360.12 centimorgans (cM) and an average distance of 0.37 cM. Using this genetic map, we identified a quantitative trait locus (QTL) that explained 7.41-8.46% of the phenotypic variance in L. vannamei survival time under acute ammonia stress. We then sequenced the transcriptomes of the most ammonia-tolerant and the most ammonia-sensitive individuals from each of four genetically distinct L. vannamei families. We found that 7546 genes were differentially expressed between the ammonia-tolerant and ammonia-sensitive individuals. Using QTL analysis and the transcriptomes, we identified one candidate gene (annotated as an ATP synthase g subunit) associated with ammonia tolerance. CONCLUSIONS: In this study, we constructed a high-density genetic map of L. vannamei and identified a QTL for ammonia tolerance. By combining QTL and transcriptome analyses, we identified a candidate gene associated with ammonia tolerance. Our work provides the basis for future genetic studies focused on molecular marker-assisted selective breeding.


Asunto(s)
Amoníaco , Sitios de Carácter Cuantitativo , Amoníaco/toxicidad , Animales , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Penaeidae
4.
Fish Shellfish Immunol ; 106: 357-364, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32791095

RESUMEN

The Penaeus stylirostris densovirus (PstDNV) is a major virus of shrimps that severely harms the shrimp farming industry. Peritrophin is a peritrophic membrane protein with chitin binding activity. To examine the roles of peritrophin in viral infection, we used yeast two-hybrid to analyze the interaction between the Pacific white shrimp (Litopenaeus vannamei) peritrophin and PstDNV proteins (CP, NS1 and NS2). The yeast two-hybrid results showed that NS1 and peritrophin had an interaction, CP and peritrophin had an interaction as well, and NS2 had no interaction with peritrophin. We validated the interactions with GST pull-down assays. We then conducted RNA interference and qRT-PCR. The results showed that when pre-injection of dsRNA-peritrophin, the quantity of PstDNV in the shrimps injected with viruses was significantly lower than in the control group (P < 0.01), indicating the viral infection was decreased when the peritrophin gene expression was inhibited. The results indicated that peritrophin of L. vannamei participated in the PstDNV infection.


Asunto(s)
Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Densovirinae/fisiología , Penaeidae/genética , Penaeidae/inmunología , Animales , Proteínas de la Cápside/fisiología , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas no Estructurales Virales/fisiología
5.
Fish Shellfish Immunol ; 88: 198-206, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30826413

RESUMEN

Viral capsid proteins play an important role in the viral infection process. To identify the cellular proteins in shrimp that interact with the Penaeus stylirostris densovirus capsid protein (PstDNV-CP), we constructed a yeast two-hybrid (Y2H) cDNA library of the muscle tissue of Litopenaeus vannamei, and hybridized the bait vector pGBKT7-CP with this library. Cloning and sequencing showed that the shrimp protein interacting with PstDNV-CP was a homolog of BRCA2 and CDKN1A(p21)-interacting protein (BCCIP). We named this protein L. vannamei BCCIP (LvBCCIP). Further analysis showed that LvBCCIP interacted with L. vannamei calmodulin (LvCaM). We validated the interactions between PstDNV-CP and LvBCCIP, and between LvBCCIP and LvCaM, with GST pulldown assays. The gene expression of LvBCCIP increased significantly after PstDNV challenge. In addition, the PstDNV titer of PstDNV-challenged shrimp was significantly reduced after LvBCCIP expression was inhibited using double-stranded RNA (dsRNA) interference. These results indicated that LvBCCIP is critical to PstDNV pathogenesis in L. vannamei. Interestingly, the growth rate of L. vannamei was significantly reduced when LvBCCIP gene expression was silenced, indicating that LvBCCIP may also be associated with growth regulation in L. vannamei. Thus, the interaction between PstDNV-CP and LvBCCIP might explain why PstDNV infection leads to runt-deformity syndrome in shrimp.


Asunto(s)
Proteínas de la Cápside/metabolismo , Densovirus/fisiología , Penaeidae/virología , Animales , Proteína BRCA2/metabolismo , Calmodulina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Expresión Génica , Penaeidae/crecimiento & desarrollo , Interferencia de ARN
6.
Fish Shellfish Immunol ; 86: 101-106, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30447431

RESUMEN

The Penaeus stylirostris densovirus (PstDNV) (also known as infectious hypodermal and hematopoietic necrosis virus, IHHNV), a very small DNA virus, is a major shrimp pathogen. The PstDNV genome encodes only two nonstructural proteins and one capsid protein. This virus is thus an ideal, simple model for the investigation of virus-host interactions. To explore the role of the PstDNV capsid in viral infections, a yeast two-hybrid (Y2H) cDNA library was constructed based on Pacific white shrimp, Litopenaeus vannamei mRNA. The Y2H library was then screened, using the PstDNV capsid protein as bait. We identified a host protein that interacted strongly with the PstDNV capsid as L. vannamei troponin I (LvTnI). An in vitro co-immunoprecipitation experiment further supported this interaction. In addition, an in vivo neutralization experiment showed that the vaccination with anti-LvTnI significantly reduced PstDNV copies in PstDNV-challenged shrimp, indicating that the interaction between the PstDNV capsid and cellular LvTnI is essential for PstDNV infection. This result has important implications for our understanding of the mechanisms by which PstDNV infects shrimp.


Asunto(s)
Proteínas de la Cápside/metabolismo , Densovirus/fisiología , Penaeidae/virología , Troponina I/metabolismo , Animales , Interacciones Huésped-Patógeno , Penaeidae/metabolismo
7.
Ecotoxicol Environ Saf ; 180: 491-500, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31121556

RESUMEN

Ammonia, one of the major limiting environment factors in aquaculture, may pose a threat to the shrimp growth, reproduction and survival. In this study, to understand molecular differences of transcriptomic and metabolomic responses and investigate the tolerance mechanisms underlying ammonia stress in Litopenaeus vannamei, ammonia-tolerant family (LV-AT) and ammonia-sensitive family (LV-AS) of these two extreme families were exposed to high-concentration (NH4Cl, 46 mg/L) ammonia for 24 h. The comparative transcriptome analysis between ammonia-treated and control (LV-C) groups revealed involvement of immune defense, cytoskeleton remodeling, antioxidative system and metabolic pathway in ammonia-stress response of L. vannamei. Likewise, metabolomics analysis showed that ammonia exposure could disturb amino acid metabolism, nucleotide metabolism and lipid metabolism, with metabolism related-genes changed according to RNA-seq analysis. The comparison of metabolite and transcript profiles between LV-AT and LV-AS indicated that LV-AT used the enhanced glycolysis and tricarboxylic acid (TCA) cycle strategies for energy supply and ammonia excretion to adapt high-concentration ammonia. Furthermore, some of genes involved in the detoxification and ammonia excretion were highly expressed in LV-AT. We speculate that the higher ability of ammonia excretion and detoxification and the accelerated energy metabolism for energy supplies might be the adaptive strategies for LV-AT relative to LV-AS after ammonia stress. Collectively, the combination of transcriptomics and metabolomics results will greatly contribute to incrementally understand the stress responses on ammonia exposure to L. vannamei and supply molecular level support for evaluating the environmental effects of ammonia on aquatic organisms. The results further constitute new sights on the potential molecular mechanisms of ammonia adaptive strategies in shrimps at the transcriptomics and metabolomics levels.


Asunto(s)
Amoníaco/toxicidad , Metabolismo Energético/efectos de los fármacos , Penaeidae/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Tolerancia a Medicamentos , Perfilación de la Expresión Génica , Metabolómica , Penaeidae/genética , Penaeidae/metabolismo
8.
Genes (Basel) ; 15(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39062616

RESUMEN

As an important mechanism in the post-transcriptional regulation of eukaryotic gene expression, alternative polyadenylation (APA) plays a key role in biological processes such as cell proliferation and differentiation. However, the role and dynamic pattern of APA during Litopenaeus vannamei metamorphosis are poorly understood. Here, RNA-seq data covering from the embryo to the maturation (16 time points) of L. vannamei were utilized. We identified 247 differentially expressed APA events between early and adult stages, and through fuzzy mean clustering analysis, we discovered five dynamic APA patterns. Among them, the gradual elongation of the 3'UTR is the major APA pattern that changes over time, and its genes are enriched in the pathways of protein and energy metabolism. Finally, we constructed mRNA-miRNA and PPI networks and detected several central miRNAs that may regulate L. vannamei development. Our results revealed the complex APA mechanisms in L. vannamei metamorphosis, shedding new light on post-transcriptional regulation of crustacean metamorphosis.


Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica , Penaeidae , Poliadenilación , Animales , Metamorfosis Biológica/genética , Penaeidae/genética , Penaeidae/crecimiento & desarrollo , Poliadenilación/genética , Regiones no Traducidas 3'/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Sci Rep ; 14(1): 15242, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956131

RESUMEN

The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.


Asunto(s)
Apoptosis , Frío , Respuesta al Choque por Frío , Metabolómica , Penaeidae , Animales , Penaeidae/metabolismo , Penaeidae/fisiología , Metabolómica/métodos , Metaboloma , Superóxido Dismutasa/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-34920111

RESUMEN

The fruitless (fru) gene has an important function in the courtship behavior and sex determination pathway of Drosophila melanogaster; however, the fru gene has never been reported in shrimps. In this study, the fruitless-like gene was identified in Cherax quadricarinatus (Cqfru) and is reported here for the first time. A sequence analysis revealed a conserved BTB domain in Cqfru which is the same as fru in D. melanogaster. An analysis of the expression level of Cqfru showed that it was highly expressed in the gastrula stage during embryonic development. Furthermore, in situ hybridization and expression distribution in tissues showed that its sexually dimorphic expression may be focused on the hepatopancreas, brains, and gonads. The gonads, brains, and hepatopancreas of males had a higher expression level of Cqfru than those of females; however, the expression level of the abdominal ganglion was found to be higher in females than in males in this study. The results of an RNA interference treatment showed that a knockdown of Cqfru reduced the expression of the insulin-like androgenic gland hormone (IAG) and tumor necrosis factor (TNF). The characteristic fru gene in shrimps is reported here for the first time, with the results providing basic information for research into the sex-determination mechanism in C. quadricarinatus.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Astacoidea/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Caracteres Sexuales , Procesos de Determinación del Sexo/genética , Factores de Transcripción/metabolismo
11.
Front Genet ; 12: 792172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096009

RESUMEN

To characterize the cold tolerance mechanism of the Pacific white shrimp (Litopenaeus vannamei), we performed single-cell RNA sequencing (scRNA-seq) of ∼5185 hepatopancreas cells from cold-tolerant (Lv-T) and common (Lv-C) L. vannamei at preferred and low temperatures (28°C and 10°C, respectively). The cells fell into 10 clusters and 4 cell types: embryonic, resorptive, blister-like, and fibrillar. We identified differentially expressed genes between Lv-T and Lv-C, which were mainly associated with the terms "immune system," "cytoskeleton," "antioxidant system," "digestive enzyme," and "detoxification," as well as the pathways "metabolic pathways of oxidative phosphorylation," "metabolism of xenobiotics by cytochrome P450," "chemical carcinogenesis," "drug metabolism-cytochrome P450," and "fatty acid metabolism." Reconstruction of fibrillar cell trajectories showed that, under low temperature stress, hepatopancreas cells had two distinct fates, cell fate 1 and cell fate 2. Cell fate 1 was mainly involved in signal transduction and sensory organ development. Cell fate 2 was mainly involved in metabolic processes. This study preliminarily clarifies the molecular mechanisms underlying cold tolerance in L. vannamei, which will be useful for the breeding of shrimp with greater cold tolerance.

12.
Front Genet ; 11: 571880, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193676

RESUMEN

Nitrite is a major environmental toxin in aquaculture systems that disrupts multiple physiological functions in aquatic animals. Although nitrite tolerance in shrimp is closely related to successful industrial production, few genetic studies of this trait are available. In this study, we constructed a high-density genetic map of Litopenaeus vannamei with 17,242 single nucleotide polymorphism markers spanning 6,828.06 centimorgans (cM), with an average distance of 0.4 cM between adjacent markers on 44 linkage groups (LGs). Using this genetic map, we identified two markers associated with nitrite tolerance. We then sequenced the transcriptomes of the most nitrite-tolerant and nitrite-sensitive individuals from each of four genetically distinct L. vannamei families (LV-I-4). We found 2,002, 1,983, 1,954, and 1,867 differentially expressed genes in families LV-1, LV-2, LV-3, and LV-4, respectively. By integrating QTL and transcriptomics analyses, we identified a candidate gene associated with nitrite tolerance. This gene was annotated as solute carrier family 26 member 6 (SLC26A6). RNA interference (RNAi) analysis demonstrated that SLC26A6 was critical for nitrite tolerance in L. vannamei. The present study increases our understanding of the molecular mechanisms underlying nitrite tolerance in shrimp and provides a basis for molecular-marker-assisted shrimp breeding.

13.
Sci Total Environ ; 711: 134416, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32000302

RESUMEN

Nitrite accumulation in aquatic environments is a potential risk factor that disrupts multiple physiological functions in aquatic animals. In this study, the physiology, transcriptome and metabolome of the control group (LV-C), nitrite-tolerance group (LV-NT) and nitrite-sensitive group (LV-NS) were investigated to identify the stress responses and mechanisms underlying the nitrite tolerance of Litopenaeus vannamei. After LV-NT and LV-NS were subjected to nitrite stress, the hemocyanin contents were significantly decreased, and hepatopancreas showed severe histological damage compared with LV-C. Likewise, the antioxidant enzymes were also significantly changed after nitrite exposure. The transcriptome data revealed differentially expressed genes associated with immune system, cytoskeleton remodeling and apoptosis in LV-NT and LV-NS. The combination of transcriptomic and metabolomic analysis revealed nitrite exposure disturbed metabolism processes in L. vannamei, including amino acid metabolism, nucleotide metabolism and lipid metabolism. The multiple comparative analysis implicated that higher nitrite tolerance of LV-NT than LV-NS may be attributed to enhanced hypoxia inducible factor-1α expression to regulate energy supply and gaseous exchange. Moreover, LV-NT showed higher antioxidative ability, detoxification gene expression and enhanced fatty acids contents after nitrite exposure in relative to LV-NS. Collectively, all these results will greatly provide new insights into the molecular mechanisms underlying the stress responses and tolerance of nitrite exposure in L. vannamei.


Asunto(s)
Metabolómica , Penaeidae , Transcriptoma , Animales , Hepatopáncreas , Nitritos , Estrés Fisiológico
14.
Front Physiol ; 9: 1399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483139

RESUMEN

The Pacific white shrimp (Litopenaeus vannamei), one of the most widely cultured shrimp species in the world, often suffers from cold stress. To understand the molecular mechanism of cold tolerance in Pacific white shrimp, we conducted a proteomic analysis on two contrasting shrimp cultivars, namely, cold-tolerant Guihai2 (GH2) and cold-sensitive Guihai1 (GH1), under normal temperature (28°C), under cold stress (16°C), and during recovery to 28°C. In total, 3,349 proteins were identified, among which 2,736 proteins were quantified. Based on gene ontology annotations, differentially expressed proteins largely belonged to biological processes, cellular components, and molecular functions. KEGG pathway annotations indicated that the main changes were observed in the lysosome, ribosomes, and oxidative phosphorylation. Subcellular localization analysis showed a significant increase in proteins present in cytosol, extracellular regions, and mitochondria. Combining enrichment-based clustering analysis and qRT-PCR analysis, we found that glutathione S-transferase, zinc proteinase, m7GpppX diphosphatase, AP2 transcription complex, and zinc-finger transcription factors played a major role in the cold stress response in Pacific white shrimp. Moreover, structure proteins, including different types of lectin and DAPPUDRAFT, were indispensable for cold stress tolerance of the Pacific white shrimp. Results indicate the molecular mechanisms of the Pacific white shrimp in response to cold stress and provide new insight into breeding new cultivars with increased cold tolerance.

15.
Gene ; 677: 24-31, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30016670

RESUMEN

The Litopenaeus vannamei (L. vannamei) is one of the most widely cultured shrimp species in the world, with low temperature being one of the most serious threats to its growth and survival. To examine the potential regulatory mechanism of cold adaptation, we conducted a microRNAs (miRNAs) analysis on the hepatopancreas of L. vannamei under normal temperature 28 °C (M28), cold acclimation 16 °C for 6 days (M16), and recovered under normal temperature (MR). In total 14,754,823, 14,945,246 and 15,880,093 raw reads representing 10,690,259, 8,587,144, and 11,512,941 unique sequences of 18-32 nt length were obtained from the M28, M16 and MR libraries, respectively. After comparing the miRNA sequences with the miRBase database, 68 known mature miRNAs and 47 novel miRNAs were identified. Expression analysis showed that 34 miRNAs were significantly differential expressed in response to cold adaptation. Compared to the M28 library, 21 miRNAs were upregulated and 13 miRNAs were downregulated significantly in the M16 library. After recovery to normal temperature, there are 16 miRNAs upregulated and 15 miRNAs downregulated significantly compared to M28 library. Then, five significantly differential expressed miRNAs under cold acclimation including three known miRNAs (mja-miR-6491, mja-miR-6494, and Bta-miR-2478) and two newly-identified miRNAs (novel_68 and novel_5) were selected for validation by RT-qPCR in the hepatopancreas and muscle tissues of cold treated shrimps. The expression trend of most the miRNAs from RT-qPCR were consistent with the next-generation sequencing data. Further, the Gene Ontology (GO) annotation showed that the metabolic process GO term was significantly enriched with target genes of the differentially expressed miRNAs. Additionally, KEGG pathway analysis suggested that the fatty acid degradation and glycerolipid metabolism pathways etc. are significantly enriched with the target genes. These findings may contribute to a better understanding of the molecular mechanisms governing the responses to low temperature in L. vannamei.


Asunto(s)
Adaptación Fisiológica/genética , MicroARNs/genética , Penaeidae/genética , Animales , Frío , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/genética , Biblioteca de Genes , Hepatopáncreas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular/métodos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA