Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Mater ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769206

RESUMEN

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

2.
J Am Chem Soc ; 146(3): 2033-2042, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206169

RESUMEN

Surface polarization under harsh electrochemical environments usually puts catalysts in a thermodynamically unstable state, which strictly hampers the thermodynamic stability of Pt-based catalysts in high-performance fuel cells. Here, we report a strategy by introducing electron buffers (variable-valence metals, M = Ti, V, Cr, and Nb) into intermetallic Pt alloy nanoparticle catalysts to suppress the surface polarization of Pt shells using the structurally ordered L10-M-PtFe as a proof of concept. Operando X-ray absorption spectra analysis suggests that with the potential increase, electron buffers, especially Cr, could facilitate an electron flow to form a electron-enriched Pt shell and thus weaken the surface polarization and tensile Pt strain. The best-performing L10-Cr-PtFe/C catalyst delivers superb oxygen reduction reaction (ORR) activity (mass activity = 1.41/1.02 A mgPt-1 at 0.9 V, rated power density = 14.0/9.2 W mgPt-1 in H2-air under a total Pt loading of 0.075/0.125 mgPt cm-2, respectively) and stability (20 mV voltage loss at 0.8 A cm-2 after 60,000 cycles of accelerated durability test) in a fuel cell cathode, representing one of the best reported ORR catalysts. Density functional theory calculations reveal that the optimized surface strain by introducing Cr on L10-PtFe/C accounts for the enhanced ORR activity, and the durability enhancement stems from the charge transfer contribution of Cr to the Pt shells and the increased kinetic energy barrier for Pt dissolution/Fe diffusion.

3.
J Am Chem Soc ; 146(26): 17659-17668, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904433

RESUMEN

Reactive metal-support interaction (RMSI) is an emerging way to regulate the catalytic performance for supported metal catalysts. However, the induction of RMSI by the thermal reduction is often accompanied by the encapsulation effect on metals, which limits the mechanism research and applications of RMSI. In this work, a gradient orbital coupling construction strategy was successfully developed to induce RMSI in Pt-carbide system without a reductant, leading to the formation of L12-PtxM-MCy (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) intermetallic electrocatalysts. Density functional theory (DFT) calculations suggest that the gradient coupling of the d(M)-2p(C)-5d(Pt) orbital would induce the electron transfer from M to C covalent bonds to Pt NPs, which facilitates the formation of C vacancy (Cv) and the subsequent M migration (occurrence of RMSI). Moreover, the good correlation between the formation energy of Cv and the onset temperature of RMSI in Pt-MCx systems proves the key role of nonmetallic atomic vacancy formation for inducing RMSI. The developed L12-Pt3Ti-TiC catalyst exhibits excellent acidic methanol oxidation reaction activity, with mass activity of 2.36 A mgPt-1 in half-cell and a peak power density of 187.9 mW mgPt-1 in a direct methanol fuel cell, which is one of the best catalysts ever reported. DFT calculations reveal that L12-Pt3Ti-TiC favorably weakens *CO absorption compared to Pt-TiC due to the change of the absorption site from Pt to Ti, which accounts for the enhanced MOR performance.

4.
Angew Chem Int Ed Engl ; 63(26): e202400751, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38634352

RESUMEN

Developing efficient and anti-corrosive oxygen reduction reaction (ORR) catalysts is of great importance for the applications of proton exchange membrane fuel cells (PEMFCs). Herein, we report a novel approach to prepare metal oxides supported intermetallic Pt alloy nanoparticles (NPs) via the reactive metal-support interaction (RMSI) as ORR catalysts, using Ni-doped cubic ZrO2 (Ni/ZrO2) supported L10-PtNi NPs as a proof of concept. Benefiting from the Ni migration during RMSI, the oxygen vacancy concentrations in the support are increased, leading to an electron enrichment of Pt. The optimal L10-PtNi-Ni/ZrO2-RMSI catalyst achieves remarkably low mass activity (MA) loss (17.8 %) after 400,000 accelerated durability test cycles in a half-cell and exceptional PEMFC performance (MA=0.76 A mgPt -1 at 0.9 V, peak power density=1.52/0.92 W cm-2 in H2-O2/-air, and 18.4 % MA decay after 30,000 cycles), representing the best reported Pt-based ORR catalysts without carbon supports. Density functional theory (DFT) calculations reveal that L10-PtNi-Ni/ZrO2-RMSI requires a lower energetic barrier for ORR than L10-PtNi-Ni/ZrO2 (direct loading), which is ascribed to a decreased Bader charge transfer between Pt and *OH, and the improved stability of L10-PtNi-Ni/ZrO2-RMSI compared to L10-PtNi-C can be contributed to the increased adhesion energy and Ni vacancy formation energy within the PtNi alloy.

5.
Angew Chem Int Ed Engl ; 62(23): e202302134, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37013693

RESUMEN

The harsh working environments of proton exchange membrane fuel cells (PEMFCs) pose huge challenges to the stability of Pt-based alloy catalysts. The widespread presence of metallic bonds with significantly delocalized electron distribution often lead to component segregation and rapid performance decay. Here we report L10 -Pt2 CuGa intermetallic nanoparticles with a unique covalent atomic interaction between Pt-Ga as high-performance PEMFC cathode catalysts. The L10 -Pt2 CuGa/C catalyst shows superb oxygen reduction reaction (ORR) activity and stability in fuel cell cathode (mass activity=0.57 A mgPt -1 at 0.9 V, peak power density=2.60/1.24 W cm-2 in H2 -O2 /air, 28 mV voltage loss at 0.8 A cm-2 after 30 000 cycles). Theoretical calculations reveal the optimized adsorption of oxygen intermediates via the formed biaxial strain on L10 -Pt2 CuGa surface, and the durability enhancement stems from the stronger Pt-M bonds than those in L11 -PtCu resulted from Pt-Ga covalent interactions.

6.
Small ; 18(32): e2202496, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35839472

RESUMEN

The development of highly efficient and durable water electrolysis catalysts plays an important role in the large-scale applications of hydrogen energy. In this work, protrusion-rich Cu@NiRu core@shell nanotubes are prepared by a facile wet chemistry method and used for catalyzing hydrogen evolution reaction (HER) in an alkaline environment. The protrusion-like RuNi alloy shells with accessible channels and abundant defects possess a large surface area and can optimize the surface electronic structure through the electron transfer from Ni to Ru. Moreover, the unique 1D hollow structure can effectively stabilize RuNi alloy shell through preventing the aggregation of nanoparticles. The synthesized catalyst can achieve a current density of 10 mA cm-2 in 1.0 m KOH with an overpotential of only 22 mV and show excellent stability after 5000 cycles, which is superior to most reported Ru-based catalysts. Density functional theory calculations illustrate that the weakened hydrogen adsorption on Ru sites induced by the alloying with Ni and active electron transfer between Ru and Ni/Cu are the keys to the much improved HER activity.

7.
Small ; 17(29): e2100735, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34145761

RESUMEN

Exploiting platinum-group-metal (PGM)-free electrocatalysts with remarkable activity and stability toward oxygen reduction reaction (ORR) is of significant importance to the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs). Here, a high-performance and anti-Fenton reaction cobalt-nitrogen-carbon (Co-N-C) catalyst is reported via employing double crosslinking (DC) hydrogel strategy, which consists of the chemical crosslinking between acrylic acid (AA) and acrylamide (AM) copolymerization and metal coordinated crosslinking between Co2+ and P(AA-AM) copolymer. The resultant DC hydrogel can benefit the Co2+ dispersion via chelated Co-N/O bonds and relieve metal agglomeration during the subsequent pyrolysis, resulting in the atomically dispersed Co-Nx/C active sites. By optimizing the ratio of AA/AM, the optimal P(AA-AM)(5-1)-Co-N catalyst exhibits a high content of nitrogen doping (12.36 at%) and specific surface area (1397 m2 g-1 ), significantly larger than that of the PAA-Co-N catalyst (10.59 at%/746 m2 g-1 ) derived from single crosslinking (SC) hydrogel. The electrochemical measurements reveal that P(AA-AM)(5-1)-Co-N possesses enhanced ORR activity (half-wave potential (E1/2 ) ≈0.820 V versus the reversible hydrogen electrode (RHE)) and stability (≈4 mV shift in E1/2 after 5000 potential cycles in 0.5 m H2 SO4 at 60 ºC) relative to PAA-Co-N, which is higher than most Co-N-C catalysts reported so far.


Asunto(s)
Carbono , Hidrogeles , Catálisis , Electrodos , Oxígeno
8.
Angew Chem Int Ed Engl ; 58(43): 15471-15477, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31464077

RESUMEN

The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt-alloy with a Pt-skin. The synthesis of ultrasmall and ordered L10 -PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10 -W-PtCo/C catalyst shows significant improvement in both initial activity and high-temperature stability. The L10 -W-PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt-Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.

9.
Water Res ; 242: 120288, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37419027

RESUMEN

Amoebae are widespread in water and serve as environment vectors for pathogens, which may threaten public health. This study evaluated the inactivation of amoeba spores and their intraspore bacteria by solar/chlorine. Dictyostelium discoideum and Burkholderia agricolaris B1qs70 were selected as model amoebae and intraspore bacteria, respectively. Compared to solar irradiation and chlorine, solar/chlorine enhanced the inactivation of amoeba spores and intraspore bacteria, with 5.1 and 5.2-log reduction at 20 min, respectively. The enhancement was similar in real drinking water by solar/chlorine under natural sunlight. However, the spore inactivation decreased to 2.97-log by 20 min solar/chlorine under oxygen-free condition, indicating that ozone played a crucial role in the spore inactivation, as also confirmed by the scavenging test using tert­butanol to scavenge the ground-state atomic oxygen (O(3P)) as a ozone precursor. Moreover, solar/chlorine induced the shape destruction and structural collapse of amoeba spores by scanning electron microscopy. As for intraspore bacteria, their inactivation was likely ascribed to endogenous reactive oxygen species. As pH increased from 5.0 to 9.0, the inactivation of amoeba spores decreased, whereas that of intraspore bacteria was similar at pH 5.0 and 6.5 during solar/chlorine treatment. This study first reports the efficient inactivation of amoeba spores and their intraspore pathogenic bacteria by solar/chlorine in drinking water.


Asunto(s)
Amoeba , Dictyostelium , Agua Potable , Ozono , Purificación del Agua , Cloro , Luz Solar , Cinética , Esporas Protozoarias , Bacterias , Desinfección
10.
ChemSusChem ; 16(1): e202201795, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36355035

RESUMEN

Fe-N-C represents the most promising non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) in fuel cells, but often suffers from poor stability in acid due to the dissolution of metal sites and the poor oxidation resistance of carbon substrates. In this work, silicon-doped iron-nitrogen-carbon (Si/Fe-N-C) catalysts were developed by in situ silicon doping and metal-polymer coordination. It was found that Si doping could not only promote the density of Fe-Nx /C active sites but also elevated the content of graphitic carbon through catalytic graphitization. The best-performing Si/Fe-N-C exhibited a half-wave potential of 0.817 V vs. reversible hydrogen electrode in 0.5 m H2 SO4 , outperforming that of undoped Fe-N-C and most of the reported Fe-N-C catalysts. It also exhibited significantly enhanced stability at elevated temperature (≥60 °C). This work provides a new way to develop non-precious metal ORR catalysts with improved activity and stability in acidic media.

11.
Nat Commun ; 14(1): 3934, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402710

RESUMEN

Hydrogen produced from neutral seawater electrolysis faces many challenges including high energy consumption, the corrosion/side reactions caused by Cl-, and the blockage of active sites by Ca2+/Mg2+ precipitates. Herein, we design a pH-asymmetric electrolyzer with a Na+ exchange membrane for direct seawater electrolysis, which can simultaneously prevent Cl- corrosion and Ca2+/Mg2+ precipitation and harvest the chemical potentials between the different electrolytes to reduce the required voltage. In-situ Raman spectroscopy and density functional theory calculations reveal that water dissociation can be promoted with a catalyst based on atomically dispersed Pt anchored to Ni-Fe-P nanowires with a reduced energy barrier (by 0.26 eV), thus accelerating the hydrogen evolution kinetics in seawater. Consequently, the asymmetric electrolyzer exhibits current densities of 10 mA cm-2 and 100 mA cm-2 at voltages of 1.31 V and 1.46 V, respectively. It can also reach 400 mA cm-2 at a low voltage of 1.66 V at 80 °C, corresponding to the electricity cost of US$1.36 per kg of H2 ($0.031/kW h for the electricity bill), lower than the United States Department of Energy 2025 target (US$1.4 per kg of H2).

12.
Adv Mater ; 34(52): e2200595, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35338536

RESUMEN

The large-scale commercialization of proton-exchange-membrane fuel cells (PEMFCs) is extremely limited by their costly platinum-group metals (PGMs) catalysts, which are used for catalyzing the sluggish oxygen reduction reaction (ORR) kinetics at the cathode. Among the reported PGM-free catalysts so far, metal-nitrogen-carbon (M-Nx /C) catalysts hold a great potential to replace PGMs catalysts for the ORR due to their excellent initial activity and low cost. However, despite tremendous progress in this field in the past decade, their further applications are restricted by fast degradation under practical conditions. Herein, the theoretical fundamentals of the stability of the M-Nx /C catalysts are first introduced in terms of thermodynamics and kinetics. The primary degradation mechanisms of M-Nx /C catalysts and the corresponding mitigating strategies are discussed in detail. Finally, the current challenges and the prospects for designing highly stable M-Nx /C catalysts are outlined.

13.
Bioresour Technol ; 320(Pt B): 124425, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33242687

RESUMEN

The aim of this study was to explore the contribution of microbial community to cellulose degradation during cellulosic wastes composting. Three raw materials with different cellulose content were employed, including rice straws (RS), leaves (L) and mushroom dregs (MD). The cellulose degraded by 92.09%, 56.68% and 40.03% during RS, L and MD composting, respectively, which could be explained by cellulases activity. Besides, each cellulase were only linked to a specific group of bacteria, thus cellulose degradation needed the cooperation of various microorganisms. Ultimately, structural equation models verified that the richness and evenness of microbial community were the primary driving factors of cellulose degradation. The richness symbolized microbial functionality, which was equivalent to the "quality" of microbial species. The evenness symbolized the scope of function, which was equivalent to the "quantity". Therefore, the "quality" and "quantity" of microbial species drove cellulose degradation during RS, L and MD composting.


Asunto(s)
Celulasa , Compostaje , Bacterias , Celulosa , Suelo
14.
Nanoscale ; 13(8): 4670-4677, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620364

RESUMEN

Ni-rich ternary layered oxides represent the most promising cathodes for lithium ion batteries (LIBs) due to their relatively large specific capacities and high energy/power densities. Unfortunately, their inherent chemical instability and surface side reactions during the charge/discharge processes lead to rapid capacity fading and poor cycling life, which seriously restrict their practical applications. Herein, we report a simple dual-modification strategy for preparing LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials by Li2SnO3 surface coating and Sn4+ gradient doping. The gradient Sn doping stabilizes the layered structure due to the strong Sn-O covalent bond and relieves the Li+/Ni2+ cation disorder by the partial oxidation of Ni2+ to Ni3+. Besides, the ionic and electronic conductive Li2SnO3 coating serves as a protective layer to eliminate the side reactions with electrolyte/air. In LIB testing, the dual-modified NCM622 cathode with 2% Sn delivers an enhanced cycling performance with 88.31% capacity retention after 100 cycles from 3.0 to 4.5 V at 1C compared to the bare NCM622. Meanwhile, the dual-modified NCM622 shows an improved reversible capacity of 136.2 mA h g-1 at 5C and enhanced electrode kinetics. The dual-modification strategy may enable a new approach to simultaneously relieve the interfacial instability and bulk structure degradation of Ni-rich cathode materials for high energy density LIBs.

15.
Bioresour Technol ; 319: 124142, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32987278

RESUMEN

This study investigated oxytetracycline (OTC) effects on nitrogen (N) transformation and bacterial community diversity during chicken manure composting. The addition of OTC inhibited nitrifying bacteria, resulted in a decrease in the transformation of NH4+-N to NO3--N during composting, and affected in the order T3 (32.76%) > T2 (28.76%) > T1 (17.02%) > CK. The OTC could act as an inhibitor against core microbial growth, leading to a delay effect during composting. 16S rRNA sequencing was employed for the functional prediction, and results indicated the bacterial community related to N transformation reconstructed under OTC stress. The core microorganisms were changed after OTC addition, with the emergence of Bacillus and Thermobifida, which could inhibit the N transformation by network analysis. Therefore, core microorganisms could be regulated to reduce the negative of OTC impacts on N transformation and thus reduce N loss during composting.


Asunto(s)
Compostaje , Microbiota , Oxitetraciclina , Animales , Estiércol , Nitrógeno , ARN Ribosómico 16S/genética , Suelo
16.
Nanoscale ; 11(37): 17376-17383, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31524918

RESUMEN

The oxygen evolution reaction (OER) is involved in various renewable energy systems, such as water-splitting, metal-air batteries and CO2 electroreduction. Ni-Fe layered double hydroxides (LDHs) have been reported as promising OER electrocatalysts in alkaline electrolytes. Herein, we demonstrate that the introduction of elemental selenium (Se) with an optimized phase composition, i.e., monoclinic (m-) or trigonal (t-) Se, could effectively tailor the OER activity of NiFe-LDH. Compared to t-Se doped NiFe-LDH, the presence of hybrid m/t-Se could effectively tune the electronic states of Ni-O and Fe-O sites, promote the generation of OER-active γ-NiOOH, and inhibit Fe-migration during the OER process, thus enhancing the OER performance. The optimized Ni0.8Fe0.2-m/t-Se0.02-LDH catalyst exhibits extraordinarily high OER activity, with an overpotential of 200 mV at 10 mA cm-2, which is superior to those of IrO2 and most of the reported Se-based OER catalysts. The Ni0.8Fe0.2-m/t-Se0.02-LDH catalyst is further implemented as an anode for overall water splitting and demonstrates a low cell voltage of 1.50 V to achieve 10 mA cm-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA