Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(19): e2201288119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507870

RESUMEN

African swine fever virus (ASFV) is the causative agent of African swine fever, a highly contagious and usually fatal disease in pigs. The pathogenesis of ASFV infection has not been clearly elucidated. Here, we used single-cell RNA-sequencing technology to survey the transcriptomic landscape of ASFV-infected primary porcine alveolar macrophages. The temporal dynamic analysis of viral genes revealed increased expression of viral transmembrane genes. Molecular characteristics in the ASFV-exposed cells exhibited the activation of antiviral signaling pathways with increased expression levels of interferon-stimulated genes and inflammatory- and cytokine-related genes. By comparing infected cells with unexposed cells, we showed that the unfolded protein response (UPR) pathway was activated in low viral load cells, while the expression level of UPR-related genes in high viral load cells was less than that in unexposed cells. Cells infected with various viral loads showed signature transcriptomic changes at the median progression of infection. Within the infected cells, differential expression analysis and coregulated virus­host analysis both demonstrated that ASFV promoted metabolic pathways but inhibited interferon and UPR signaling, implying the regulation pathway of viral replication in host cells. Furthermore, our results revealed that the cell apoptosis pathway was activated upon ASFV infection. Mechanistically, the production of tumor necrosis factor alpha (TNF-α) induced by ASFV infection is necessary for cell apoptosis, highlighting the importance of TNF-α in ASFV pathogenesis. Collectively, the data provide insights into the comprehensive host responses and complex virus­host interactions during ASFV infection, which may instruct future research on antiviral strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Africana/genética , Animales , Antivirales/metabolismo , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Porcinos , Replicación Viral/fisiología
2.
Ecol Appl ; 29(7): e01967, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257690

RESUMEN

Revegetation of pioneer plants is a critical phase in community establishment for mudflats in seriously degraded coastal wetlands. We tested a hypothesis of the importance of a "power balance" among propagule resilience and sedimentary and tidal disturbances for vegetation reestablishment. Our experiment used three types of propagules (seeds, seedlings, and corms) of native Scirpus species in the fringing flats with similar tidal flows and varying sedimentary intensities in the Yangtze Estuary. Regardless of the initial planting densities, the seed germination rate was extremely low in the field situation. Although the incubated seedlings were planted directly on the bare flat, the wave movement easily flushed the seedlings, even at the site with moderate sedimentary accretion. Failure of the revegetation practice using the seed and seedling materials indicated that the combined "growing and anchoring power" of young seedlings and "stabilizing power" of the sediment were insufficient to withstand the "dislodging power" of the tidal energy. In contrast, the planting approach with underground propagules (corms) proved to be feasible for vegetation establishment at the sites with moderate and low-level sedimentary intensities. The successful practice improved the tipping point of plant survival and tussock formation could be surpassed when the combined growing and anchoring power of seedlings that developed from corms with the stabilizing power of the sediment was greater than the dislodging power of the wave energy. However, at the site with high-level sedimentary intensity, the excessive sediment converted to the burying stress power as seedlings developed from the corms, revealing a burial threshold for seedling survival. The risk of seedling establishment was high when the burying stress power of the sediment far outweighed the combination of the growing power of the seedlings and the sediment removal power of the tidal current and surpassed the tipping point of vegetation die-off. Additionally, we checked the practice cost of the different approaches to ensure a highly cost-effective revegetation planning based on site suitability. This study highlights that understanding of the propagule-sediment-tide power balance offers a tool for improvement of the revegetation and management of site-specific sedimentary and hydrological environments for many degraded coastal ecosystems.


Asunto(s)
Ecosistema , Estuarios , Plantones , Semillas , Humedales
3.
PLoS Genet ; 11(4): e1005175, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25875952

RESUMEN

Depression is a serious mental disorder that affects a person's mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression.


Asunto(s)
Depresión/genética , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis , Animales , Depresión/metabolismo , Depresión/patología , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo
4.
Anal Chem ; 89(10): 5389-5394, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28397497

RESUMEN

The development of functional DNA-based nanosensors in living cells has experienced some design challenges, including, for example, poor cellular uptake, rapid nuclease degradation, and high false positives. Herein, we designed selectively permeable poly(methacrylic acid) (PMA) nanocapsules to encapsulate functional DNAs for metal ions and small-molecules sensing in living cells. Since functional DNAs are concentrated in the nanocapsules, an increasing reaction rate is obtained in vitro. During endocytosis, polymeric capsules simultaneously improve cellular uptake of functional DNAs and preserve their structural integrity inside the confined capsule space. More importantly, selective shell permeability allows for the free diffusion of small molecular targets through capsule shells but limits the diffusion of large biomolecules, such as nuclease and nonspecific protein. Compared to the free DNAzyme, PMA nanocapsules could reduce false positives and enhance detection accuracy. Furthermore, PMA nanocapsules are biocompatible and biodegradable. Through the controllability of wall thickness, permeability, and size distribution, these nanocapsules could be expanded easily to other targets, such as microRNAs, small peptides, and metabolites. These nanocapsules will pave the way for in situ monitoring of various biological processes in living cells and in vivo.


Asunto(s)
Técnicas Biosensibles/métodos , ADN/química , Nanocápsulas/química , Zinc/metabolismo , Reactores Biológicos , Carbocianinas/química , ADN Catalítico/metabolismo , Humanos , Plomo/química , Plomo/metabolismo , Membrana Dobles de Lípidos/química , Células MCF-7 , Microscopía Confocal , Tamaño de la Partícula , Ácidos Polimetacrílicos/química , Dióxido de Silicio/química , Espectrometría de Fluorescencia , Zinc/química
5.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28383201

RESUMEN

Smart assemblies have attracted increased interest in various areas, especially in developing novel stimuli-responsive theranostics. Herein, commercially available, natural tannic acid (TA) and iron oxide nanoparticles (Fe3 O4 NPs) are utilized as models to construct smart magnetic assemblies based on polyphenol-inspired NPs-phenolic self-assembly between NPs and TA. Interestingly, the magnetic assemblies can be specially disassembled by adenosine triphosphate, which shows a stronger affinity to Fe3 O4 NPs than that of TA and partly replaces the surface coordinated TA. The disassembly can further be facilitated by the acidic environment hence causing the remarkable change of the transverse relaxivity and potent "turn-on" of fluorescence (FL) signals. Therefore, the assemblies for specific and sensitive tumor magnetic resonance and FL dual-modal imaging and photothermal therapy after intravenous injection of the assemblies are successfully employed. This work not only provides understandings on the self-assembly between NPs and polyphenols, but also will open new insights for facilely constructing versatile assemblies and extending their biomedical applications.


Asunto(s)
Adenosina Trifosfato/química , Hipertermia Inducida , Imagen por Resonancia Magnética , Neoplasias/terapia , Imagen Óptica , Fototerapia , Polifenoles/fisiología , Animales , Dispersión Dinámica de Luz , Fluorescencia , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Ratones , Neoplasias/patología , Soluciones
6.
J Virol ; 89(12): 6171-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25833044

RESUMEN

UNLABELLED: Flavivirus NS4A protein induces host membrane rearrangement and functions as a replication complex component. The molecular details of how flavivirus NS4A exerts these functions remain elusive. Here, we used dengue virus (DENV) as a model to characterize and demonstrate the biological relevance of flavivirus NS4A oligomerization. DENV type 2 (DENV-2) NS4A protein forms oligomers in infected cells or when expressed alone. Deletion mutagenesis mapped amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]) of NS4A as the major determinant for oligomerization, while the N-terminal 50 residues contribute only slightly to the oligomerization. Nuclear magnetic resonance (NMR) analysis of NS4A amino acids 17 to 80 suggests that residues L31, L52, E53, G66, and G67 could participate in oligomerization. Ala substitution for 15 flavivirus conserved NS4A residues revealed that these amino acids are important for viral replication. Among the 15 mutated NS4A residues, 2 amino acids (E50A and G67A) are located within TMD1. Both E50A and G67A attenuated viral replication, decreased NS4A oligomerization, and reduced NS4A protein stability. In contrast, NS4A oligomerization was not affected by the replication-defective mutations (R12A, P49A, and K80A) located outside TMD1. trans complementation experiments showed that expression of wild-type NS4A alone was not sufficient to rescue the replication-lethal NS4A mutants. However, the presence of DENV-2 replicons could partially restore the replication defect of some lethal NS4A mutants (L26A and K80A), but not others (L60A and E122A), suggesting an unidentified mechanism governing the outcome of complementation in a mutant-dependent manner. Collectively, the results have demonstrated the importance of TMD1-mediated NS4A oligomerization in flavivirus replication. IMPORTANCE: We report that DENV NS4A forms oligomers. Such NS4A oligomerization is mediated mainly through amino acids 50 to 76 (spanning the first transmembrane domain [TMD1]). The biological importance of NS4A oligomerization is demonstrated by results showing that mutations of flavivirus conserved residues (E50A and G67A located within TMD1) reduced the oligomerization and stability of the NS4A protein, leading to attenuated viral replication. A systematic mutagenesis analysis demonstrated that flavivirus conserved NS4A residues are important for DENV replication. A successful trans complementation of replication-lethal NS4A mutant virus requires wild-type NS4A in the context of the viral replication complex. The wild-type NS4A protein alone is not sufficient to rescue the replication defect of NS4A mutants. Intriguingly, distinct NS4A mutants yielded different complementation outcomes in the replicon-containing cells. Overall, the study has enhanced our understanding of flavivirus NS4A at the molecular level. The results also suggest that inhibitor blocking of NS4A oligomerization could be explored for antiviral drug discovery.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/fisiología , Multimerización de Proteína , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Prueba de Complementación Genética , Eliminación de Secuencia
7.
J Gen Virol ; 96(8): 2165-2175, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25908779

RESUMEN

Japanese encephalitis remains the leading cause of viral encephalitis in children in Asia and is expanding its geographical range to larger areas in Asia and Australasia. Five genotypes of Japanese encephalitis virus (JEV) co-circulate in the geographically affected areas. In particular, the emergence of genotype I (GI) JEV has displaced genotype III (GIII) as the dominant circulating genotype in many Asian regions. However, all approved vaccine products are derived from GIII strains. In the present study, bioinformatic analysis revealed that GI and GIII JEV strains shared two distinct amino acid residues within the envelope (E) protein (E222 and E327). By using reverse genetics approaches, A222S and S327T mutations were demonstrated to decrease live-attenuated vaccine (LAV) SA14-14-2-induced neutralizing antibodies in humans, without altering viral replication. A222S or S327T mutations were then rationally engineered into the infectious clone of SA14-14-2, and the resulting mutant strains retained the same genetic stability and attenuation characteristics as the parent strain. More importantly, immunization of mice with LAV-A222S or LAV-S327T elicited increased neutralizing antibodies against GI strains. Together, these results demonstrated that E222 and E327 are potential genotype-related neutralization determinants and are critical in determining the protective efficacy of live Japanese encephalitis vaccine SA14-14-2 against circulating GI strains. Our findings will aid in the rational design of the next generation of Japanese encephalitis LAVs capable of providing broad protection against all JEV strains belonging to different genotypes.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/virología , Vacunas contra la Encefalitis Japonesa/genética , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Virus de la Encefalitis Japonesa (Especie)/química , Virus de la Encefalitis Japonesa (Especie)/clasificación , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/inmunología , Femenino , Genotipo , Humanos , Vacunas contra la Encefalitis Japonesa/química , Vacunas contra la Encefalitis Japonesa/inmunología , Masculino , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
8.
PLoS Pathog ; 9(8): e1003521, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935499

RESUMEN

Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Metiltransferasas/inmunología , Animales , Cricetinae , Dengue/enzimología , Dengue/genética , Dengue/prevención & control , Vacunas contra el Dengue/genética , Vacunas contra el Dengue/farmacología , Virus del Dengue/genética , Células HEK293 , Humanos , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Macaca mulatta , Metiltransferasas/genética , Ratones , Ratones Mutantes , Mutación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/farmacología
9.
J Clin Gastroenterol ; 49(4): 323-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25014234

RESUMEN

OBJECTIVE: To investigate the relationship between relapse and the levels of the residual amount of HBV DNA in serum at cessation in chronic hepatitis B patients meeting 2008 Asian Pacific Association for the Study of the Liver (APASL) nucleos(t)ide analogs (NAs) cessation criteria. METHODS: A total of 72 chronic hepatitis B patients who took NAs and had reached 2008 APASL cessation criteria entered the study. Patients were followed up for 6 months or longer after antiviral therapy was stopped. Serum HBV DNA level at cessation was detected by a highly sensitive polymerase chain reaction assay with detection limitation of 2 IU/mL. RESULTS: Of all the 72 patients, 42 patients (65.3%) relapsed after NA cessation. The detectable rate of the trace amount of HBV DNA at cessation was 41.7% by highly sensitive polymerase chain reaction reagents. The detectable rate of patients with consolidation treatment duration of <18 months was higher than that with consolidation duration of ≥18 months (47.5% vs. 15.4%, P=0.034), and the detectable rate of patients with HBeAg seroconversion within 6 months of treatment was lower than that of ≥6 months (25.0% vs. 61.5%, P=0.036). The residual amount of HBV DNA and detectable rate at cessation showed significant differences between relapsed and nonrelapsed patients (130.4±420.90 vs 44.6±155.16 IU/mL, P=0.004; 55.3% vs. 16.0%, P=0.001). The cutoff value predicting relapse was 2.24 IU/mL, with a sensitivity of 0.553 and specificity of 0.840. CONCLUSIONS: Residual amount of HBV DNA in serum at NA cessation is associated with HBV relapse. The cutoff value predicting relapse was 2.24 IU/mL, with a sensitivity of 0.553 and specificity of 0.840.


Asunto(s)
ADN Viral/sangre , Virus de la Hepatitis B/genética , Hepatitis B Crónica/sangre , Privación de Tratamiento/estadística & datos numéricos , Adulto , Antivirales/uso terapéutico , Femenino , Estudios de Seguimiento , Hepatitis B Crónica/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Nucleótidos/uso terapéutico , Proyectos Piloto , Reacción en Cadena de la Polimerasa , Recurrencia
10.
J Gen Virol ; 95(Pt 4): 806-815, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24362961

RESUMEN

A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M

Asunto(s)
Adaptación Biológica , Virus de la Encefalitis Japonesa (Especie)/fisiología , Mutación Missense , Pase Seriado , Proteínas no Estructurales Virales/genética , Replicación Viral , Animales , Encéfalo/virología , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Genética Inversa , Proteínas no Estructurales Virales/metabolismo , Virulencia
11.
J Virol ; 87(10): 5812-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487465

RESUMEN

Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/enzimología , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/prevención & control , Vacunas contra la Encefalitis Japonesa/genética , Vacunas contra la Encefalitis Japonesa/inmunología , ARN Viral/metabolismo , ARNt Metiltransferasas/deficiencia , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Leucocitos Mononucleares/inmunología , Metilación , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
12.
J Virol ; 87(24): 13694-705, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109223

RESUMEN

The development of a safe and efficient dengue vaccine represents a global challenge in public health. Chimeric dengue viruses (DENV) based on an attenuated flavivirus have been well developed as vaccine candidates by using reverse genetics. In this study, based on the full-length infectious cDNA clone of the well-known Japanese encephalitis virus live vaccine strain SA14-14-2 as a backbone, a novel chimeric dengue virus (named ChinDENV) was rationally designed and constructed by replacement with the premembrane and envelope genes of dengue 2 virus. The recovered chimeric virus showed growth and plaque properties similar to those of the parental DENV in mammalian and mosquito cells. ChinDENV was highly attenuated in mice, and no viremia was induced in rhesus monkeys upon subcutaneous inoculation. ChinDENV retained its genetic stability and attenuation phenotype after serial 15 passages in cultured cells. A single immunization with various doses of ChinDENV elicited strong neutralizing antibodies in a dose-dependent manner. When vaccinated monkeys were challenged with wild-type DENV, all animals except one that received the lower dose were protected against the development of viremia. Furthermore, immunization with ChinDENV conferred efficient cross protection against lethal JEV challenge in mice in association with robust cellular immunity induced by the replicating nonstructural proteins. Taken together, the results of this preclinical study well demonstrate the great potential of ChinDENV for further development as a dengue vaccine candidate, and this kind of chimeric flavivirus based on JE vaccine virus represents a powerful tool to deliver foreign antigens.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/prevención & control , Virus de la Encefalitis Japonesa (Especie)/inmunología , Animales , Anticuerpos Antivirales/inmunología , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/administración & dosificación , Vacunas contra el Dengue/genética , Virus del Dengue/genética , Virus de la Encefalitis Japonesa (Especie)/genética , Femenino , Humanos , Inmunización , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Proteínas del Envoltorio Viral/administración & dosificación , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
13.
Nature ; 453(7197): 921-4, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18488016

RESUMEN

Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms. HD is caused by the expansion of cytosine-adenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological, neurological and genetic similarities between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Macaca mulatta/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Corea/genética , Corea/fisiopatología , Distonía/genética , Distonía/fisiopatología , Exones/genética , Femenino , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Masculino , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Embarazo , Análisis de Supervivencia
14.
Nat Genet ; 37(2): 198-204, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15654337

RESUMEN

Proteins with polyglutamine (polyQ) expansions accumulate in the nucleus and affect gene expression. The mechanism by which mutant huntingtin (htt) accumulates intranuclearly is not known; wild-type htt, a 350-kDa protein of unknown function, is normally found in the cytoplasm. N-terminal fragments of mutant htt, which contain a polyQ expansion (>37 glutamines), have no conserved nuclear localization sequences or nuclear export sequences but can accumulate in the nucleus and cause neurological problems in transgenic mice. Here we report that N-terminal htt shuttles between the cytoplasm and nucleus in a Ran GTPase-independent manner. Small N-terminal htt fragments interact with the nuclear pore protein translocated promoter region (Tpr), which is involved in nuclear export. PolyQ expansion and aggregation decrease this interaction and increase the nuclear accumulation of htt. Reducing the expression of Tpr by RNA interference or deletion of ten amino acids of N-terminal htt, which are essential for the interaction of htt with Tpr, increased the nuclear accumulation of htt. These results suggest that Tpr has a role in the nuclear export of N-terminal htt and that polyQ expansion reduces this nuclear export to cause the nuclear accumulation of htt.


Asunto(s)
Enfermedad de Huntington/genética , Péptidos/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de Complejo Poro Nuclear/química , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/genética , Transfección
15.
Sci Total Environ ; 935: 173232, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38761926

RESUMEN

Biogeochemical processes mediated by plants and soil in coastal marshes are vulnerable to environmental changes and biological invasion. In particular, tidal inundation and salinity stress will intensify under future rising sea level scenarios. In this study, the interactive effects of flooding regimes (non-waterlogging vs. waterlogging) and salinity (0, 5, 15, and 30 parts per thousand (ppt)) on photosynthetic carbon allocation in plant, rhizodeposition, and microbial communities in native (Phragmites australis) and invasive (Spartina alterniflora) marshes were investigated using mesocosm experiments and 13CO2 pulse-labeling techniques. The results showed that waterlogging and elevated salinity treatments decreased specific root allocation (SRA) of 13C, rhizodeposition allocation (RA) 13C, soil 13C content, grouped microbial PLFAs, and the fungal 13C proportion relative to total PLFAs-13C. The lowest SRA, RA, and fungal 13C proportion occurred under the combined waterlogging and high (30 ppt) salinity treatments. Relative to S. alterniflora, P. australis displayed greater sensitivity to hydrological changes, with a greater reduction in rhizodeposition, soil 13C content, and fungal PLFAs. S. alterniflora showed an earlier peak SRA but a lower root/shoot 13C ratio than P. australis. This suggests that S. alterniflora may transfer more photosynthetic carbon to the shoot and rhizosphere to facilitate invasion under stress. Waterlogging and high salinity treatments shifted C allocation towards bacteria over fungi for both plant species, with a higher allocation shift in S. alterniflora soil, revealing the species-specific microbial response to hydrological stresses. Potential shifts towards less efficient bacterial pathways might result in accelerated carbon loss. Over the study period, salinity was the primary driver for both species, explaining 33.2-50.8 % of 13C allocation in the plant-soil-microbe system. We propose that future carbon dynamics in coastal salt marshes under sea-level rise conditions depend on species-specific adaptive strategies and carbon allocation patterns of native and invasive plant-soil systems.


Asunto(s)
Especies Introducidas , Fotosíntesis , Salinidad , Humedales , Poaceae , Carbono/metabolismo , Hidrología , Suelo/química , Raíces de Plantas/metabolismo
16.
Zool Res ; 45(2): 242-252, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38287905

RESUMEN

PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs ( Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys ( Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.


Asunto(s)
Primates , Proteínas Quinasas , Animales , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Primates/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Haplorrinos
17.
J Gen Virol ; 94(Pt 7): 1510-1516, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23559476

RESUMEN

The four serotypes of dengue virus (DENV) represent one of the major mosquito-borne pathogens globally; so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form the prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but was also involved in antibody-dependent enhancement of DENV infection. However, the B-cell epitopes on the pr protein of DENV have not been well characterized. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with glutathione S-transferase and expressed in Escherichia coli. ELISA screening with murine hyperimmune antiserum against immature DENV identified the P8 peptide (57KQNEPEDIDCWCNST7¹) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide 57KQNEPEDI64 was the smallest unit capable of antibody binding. Importantly, the 8-e epitope reacted with sera from dengue fever patients. Site-directed mutagenesis revealed the asparagine residue at position 59 was important for epitope recognition. The 8-e epitope coincided well with the B-cell epitopes predicted by Immune Epitope Database analysis, and 3D structural modelling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help to understand the life cycle of DENV and pathogenesis of dengue infections in human.


Asunto(s)
Virus del Dengue/inmunología , Mapeo Epitopo , Epítopos de Linfocito B , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Biología Computacional/métodos , Dengue/inmunología , Dengue/prevención & control , Virus del Dengue/genética , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Glutatión Transferasa/genética , Glutatión Transferasa/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Mutagénesis Sitio-Dirigida , Programas Informáticos , Proteínas del Envoltorio Viral/genética
18.
J Gen Virol ; 94(Pt 12): 2700-2709, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24092759

RESUMEN

Mosquito-borne flaviviruses include a large group of important human medical pathogens. Several chimaeric flaviviruses have been constructed, and show potential for vaccine development. Although Japanese encephalitis virus (JEV) live vaccine SA14-14-2 has been widely used with ideal safety and efficacy profiles, no chimaeric flavivirus based on the JEV vaccine has been described to date. Based on the reverse genetic system of the JEV vaccine SA14-14-2, a novel live chimaeric flavivirus carrying the protective antigens of West Nile virus (WNV) was constructed and recovered in this study. The resulting chimaera (ChinWNV) replicated efficiently in both mammalian and mosquito cells and possessed genetic stability after in vitro serial passaging. ChinWNV exhibited a small-plaque phenotype, and its replication was significantly restricted in mouse peripheral blood and brain compared with parental WNV. Importantly, ChinWNV was highly attenuated with regard to both neurovirulence and neuroinvasiveness in mice. Furthermore, a single ChinWNV immunization stimulated robust WNV-specific adaptive immune responses in mice, conferring significant protection against lethal WNV infection. Our results demonstrate that chimaeric flaviviruses based on the JEV vaccine can serve as a powerful platform for vaccine development, and that ChinWNV represents a potential WNV vaccine candidate that merits further development.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Proteínas Recombinantes , Vacunas Atenuadas , Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental , Animales , Encéfalo/virología , Línea Celular , Diseño de Fármacos , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/inmunología , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Femenino , Humanos , Vacunas contra la Encefalitis Japonesa , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Virulencia , Replicación Viral , Fiebre del Nilo Occidental/inmunología , Vacunas contra el Virus del Nilo Occidental/genética , Vacunas contra el Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/inmunología , Virus del Nilo Occidental/patogenicidad , Virus del Nilo Occidental/fisiología
19.
BMC Neurosci ; 14: 88, 2013 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23957861

RESUMEN

BACKGROUND: Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by an expansion in the polyglutamine (polyQ) region of the Huntingtin (HTT) gene. The clinical features of HD are characterized by cognitive, psychological, and motor deficits. Molecular instability, a core component in neurological disease progression, can be comprehensively evaluated through longitudinal transcriptomic profiling. Development of animal models amenable to longitudinal examination enables distinct disease-associated mechanisms to be identified. RESULTS: Here we report the first longitudinal study of transgenic monkeys with genomic integration of various lengths of the human HTT gene and a range of polyQ repeats. With this unique group of transgenic HD nonhuman primates (HD monkeys), we profiled over 47,000 transcripts from peripheral blood collected over a 2 year timespan from HD monkeys and age-matched wild-type control monkeys. CONCLUSIONS: Messenger RNAs with expression patterns which diverged with disease progression in the HD monkeys considerably facilitated our search for transcripts with diagnostic or therapeutic potential in the blood of human HD patients, opening up a new avenue for clinical investigation.


Asunto(s)
Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Transcriptoma , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/sangre , Estudios Longitudinales , Macaca mulatta , Masculino , ARN Mensajero/metabolismo
20.
Virol J ; 10: 64, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23442449

RESUMEN

BACKGROUND: Viral self-replicating sub-genomic replicons represent a powerful tool for studying viral genome replication, antiviral screening and chimeric vaccine development. Many kinds of flavivirus replicons have been developed with broad applications. FINDINGS: The replicon system of JEV live vaccine strain SA14-14-2 was successfully developed in this study. Two kinds of replicons that express enhanced green fluorescent protein (EGFP) and Renilla luciferase (R.luc) were constructed under the control of SP6 promoter, respectively. Robust EGFP and R.luc signals could be detected in the replicon-transfected BHK-21 cells. Furthermore, the potential effects of selected amino acids in the C-terminal of envelope protein on replication were characterized using the replicon system. CONCLUSIONS: Our results provide a useful platform not only for the study of JEV replication, but also for antiviral screening and chimeric vaccine development.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/virología , Vacunas contra la Encefalitis Japonesa/genética , Replicón , Animales , Línea Celular , Clonación Molecular , Cricetinae , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/prevención & control , Humanos , Vacunas contra la Encefalitis Japonesa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA