Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Carcinogenesis ; 45(6): 424-435, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38302114

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.


Asunto(s)
Apoptosis , Proliferación Celular , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Elementos de Facilitación Genéticos , Proteínas que Contienen Bromodominio
2.
BMC Cancer ; 24(1): 928, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090568

RESUMEN

BACKGROUND: Osteosarcoma (OS) is one of the most common primary malignant tumors of bone in children, which develops from osteoblasts and typically occurs during the rapid growth phase of the bone. Recently, Super-Enhancers(SEs)have been reported to play a crucial role in osteosarcoma growth and metastasis. Therefore, there is an urgent need to identify specific targeted inhibitors of SEs to assist clinical therapy. This study aimed to elucidate the role of BRD4 inhibitor GNE-987 targeting SEs in OS and preliminarily explore its mechanism. METHODS: We evaluated changes in osteosarcoma cells following treatment with a BRD4 inhibitor GNE-987. We assessed the anti-tumor effect of GNE-987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, xenograft tumor size measurements, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS: In this study, we found that extremely low concentrations of GNE-987(2-10 nM) significantly reduced the proliferation and survival of OS cells by degrading BRD4. In addition, we found that GNE-987 markedly induced cell cycle arrest and apoptosis in OS cells. Further study indicated that VHL was critical for GNE-987 to exert its antitumor effect in OS cells. Consistent with in vitro results, GNE-987 administration significantly reduced tumor size in xenograft models with minimal toxicity, and partially degraded the BRD4 protein. KRT80 was identified through analysis of the RNA-seq and ChIP-seq data. U2OS HiC analysis suggested a higher frequency of chromatin interactions near the KRT80 binding site. The enrichment of H3K27ac modification at KRT80 was significantly reduced after GNE-987 treatment. KRT80 was identified as playing an important role in OS occurrence and development. CONCLUSIONS: This research revealed that GNE-987 selectively degraded BRD4 and disrupted the transcriptional regulation of oncogenes in OS. GNE-987 has the potential to affect KRT80 against OS.


Asunto(s)
Apoptosis , Neoplasias Óseas , Proteínas de Ciclo Celular , Proliferación Celular , Osteosarcoma , Factores de Transcripción , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biomed Pharmacother ; 174: 116557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583337

RESUMEN

Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.


Asunto(s)
Dexametasona , Animales , Dexametasona/farmacología , Ratones , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Sirtuina 1/metabolismo , Metaboloma/efectos de los fármacos , Trastornos del Metabolismo de los Lípidos/tratamiento farmacológico , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/inducido químicamente , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Metabolómica/métodos
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 78-84, 2024 Feb.
Artículo en Zh | MEDLINE | ID: mdl-38387903

RESUMEN

OBJECTIVE: To explore the clinical characteristics, molecular characteristics, treatment and prognosis of pediatric Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) with a therapeutic target. METHODS: A total of 27 patients of Ph-like ALL with targeted drug target were initially diagnosed in Children's Hospital of Soochow University from December 2017 to June 2021. The data of age, gender, white blood cell (WBC) count at initial diagnosis, genetic characteristics, molecular biological changes, chemotherapy regimen, different targeted drugs were given, and minimal residual disease (MRD) on day 19, MRD on day 46, whether hematopoietic stem cell transplantation (HSCT) were retrospective analyed, and the clinical characteristics and treatment effect were summarized. Survival analysis was performed by Kaplan-Meier method. RESULTS: The intensity of chemotherapy was adjusted according to the MRD level during induced remission therapy in 27 patients, 10 patients were treated with targeted drugs during treatment, and 3 patients were bridged with HSCT, 1 patient died and 2 patients survived. Among the 24 patients who did not receive HSCT, 1 patient developed relapse, and achieved complete remission (CR) after treatment with chimeric antigen receptors T cells (CAR-T). The 3-year overall survival, 3-year relapse-free survival and 3-year event-free survival rate of 27 patients were (95.5±4.4)%, (95.0±4.9)% and (90.7±6.3)% respectively. CONCLUSION: Risk stratification chemotherapy based on MRD monitoring can improve the prognosis of Ph-like ALL in children, combined with targeted drugs can achieve complete remission as soon as possible in children whose chemotherapy response is poor, and sequential CAR-T and HSCT can significantly improve the therapeutic effect of Ph-like ALL in children whose MRD is continuously positive during induced remission therapy.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Niño , Humanos , Cromosoma Filadelfia , Estudios Retrospectivos , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Neoplasia Residual , Respuesta Patológica Completa , Recurrencia
5.
J Ethnopharmacol ; 298: 115578, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917892

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The bidirectional property of traditional Chinese medicines (TCMs) was recorded in the classic work Medicine Origin (Yi Xue Qi Yuan) as early as the Jin and Yuan dynasties of ancient China. Since then, this imperative theory has been applied to guide the clinical application of TCMs. Studies have been performed to investigate this phenomenon only over the last three decades. A limited number of reviews on the bidirectional role of TCMs have been published, and almost all current studies are published in the Chinese language. AIM OF THE REVIEW: The aim of this review is to provide the first comprehensive evidence regarding the bidirectional effects and the underlying mechanisms of TCMs and their active compounds. MATERIALS AND METHODS: Information relevant to opposing pharmacological activities or opposing properties exerted by TCM prescriptions, herbal medicines, and their active compound, as well as their mechanisms was summarized by searching Chinese and English databases, including the Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, Chinese Scientific Journal Database (VIP), Google Scholar, PubMed, Web of Science, Science Direct, and Wiley Online Library. RESULTS: Although the bidirectional regulation of TCMs has been applied in the clinic since ancient times in China, only limited reviews have been published in Chinese. The existing data showed that bidirectional effects can be found in TCM prescriptions, herbal medicines, and pure active compounds. Additionally, the bidirectional role of TCMs was primarily reported in the modulation of immune function, blood circulation and hemostasis, gastrointestinal motility, the central nervous system and blood pressure. This may because the therapeutic outcomes of these disorders are more obvious than those of other complicated diseases. Intriguingly, some herbal medicines have multiple bidirectional activities; for instance, Panax ginseng C. A. Meyer showed bidirectional regulation of immune function and the central nervous system; Astragalus membranaceus can bidirectionally regulate blood pressure and immune function; and Rheum officinale Baill exerts bidirectional effects on blood circulation and hemostasis, gastrointestinal motility and immune function. The mechanisms underlying the bidirectional effects of TCMs are largely attributed to the complexity of herbal constituents, dosage differences, the processing of herbal medicine, and compatibility of medicines, the physiological conditions of patients and adaptogenic effects. CONCLUSION: Uncovering the bidirectional effects and mechanisms of TCMs is of great importance for both scientific research and clinical applications. This review may help to facilitate the recognition of the bidirectional role of TCMs, to explain some seemingly-opposite phenomena in the pharmacological study of herbal medicines and to provide guidance for TCM practitioners.


Asunto(s)
Medicamentos Herbarios Chinos , Plantas Medicinales , Bases de Datos Factuales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Fitoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA